Starving Philosophers:
Experimentation with Monitor Synchronization

Steven Robbins
Division of Computer Science
University of Texas at San Antonio
srobbins@cs.utsa.edu

Abstract

Textbook discussions of synchronization seldom go beyond a
brief introduction in terms of classical problems. This paper
presents a simulator for the monitor solution of the dining
philosophers problem that students can use to experimentally
explore how such a solution might behave in practice. The
simulator, which can be run remotely from a browser or can
be downloaded for running locally, is written in Java so that
it can be run on almost any system.

1 Introduction

Most operating systems textbooks illustrate synchronization
techniques such as semaphores, monitors, and message pass-
ing by solving classical synchronization problems (bounded
buffers, readers and writers, and dining philosophers) but do
not address implementation issues that might affect the be-
havior of solutions in practice [6, 8, 9, 10]. As a result, stu-
dents have little real understanding of how synchronization
actually works. This paper presents a simulator that is de-
signed to be used in conjunction with a standard operating
systems textbook to allow students to experiment with these
concepts. The simulator can be used to introduce students to
key techniques of experimentation [11, 12, 13] while explor-
ing monitor behavior and the idea of starvation as it applies
to the dining philosophers problem. Monitors were chosen
for the simulation because of the emergence of the Java lan-
guage which uses monitor concepts for its synchronization.
The dining philosophers problem is an interesting example,
because there is a trade off between optimization of paral-
lelism and elimination of starvation. The next section of the
paper discusses monitors and how the choice of implementa-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation onthe
first page. To copy otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or afee.

SIGCSE 2001 2/01 Charlotte, NC USA

Copyright 2000 ACM 1-58113-329-4/01/0002 ... $5.00

tion might affect behavior. The classical dining philosopher’s
problem is reviewed in Section 3 and the problem of starva-
tion is discussed. Sections 4 and 5 introduce the simulator,
and Section 6 shows how the simulator might be used to un-
derstand different implementation issues. Section 7 discusses
resources available to support the use of this simulator.

2 Monitors and Monitor Classification

A monitor is a synchronization construct that enforces mutual
exclusion. Monitors are typically supported by a program-
ming language rather than by the operating system. They
were introduced in Concurrent Pascal [1] and are the syn-
chronization mechanism used in the Java language. A mon-
itor contains code and data. All of the data and some of the
code may be private to the monitor, accessed only by code
that is part of the monitor. Each monitor has a single lock,
and a task must acquire the lock to execute monitor code.
The task that owns the monitor lock is called the active task.
Only one task can be active in the monitor at a time.

A task can acquire the monitor’s lock through one of several
monitor queues. It gives up the lock by returning from a
monitor method or by blocking on a condition variable.

A condition variable is not a variable at all. In fact it is just a
queue that is part of the monitor. Sometimes these are called
event queues, but we will use the expression condition vari-
able queue here. A condition variable queue can only be ac-
cessed with two monitor methods associated with this queue.
These methods are typically called wait and signal. The sig-
nal method is called notify in Java.

A task that holds the monitor lock may give it up and enter
a condition variable queue by executing the corresponding
wait method. A task that holds the monitor lock may revive
a task waiting in a condition variable queue with the notify
method of that queue. The notify method removes one task
from the condition variable queue if the queue is not empty.
Since the notifying and notified tasks may not both be ac-
tive in the monitor simultaneously, at least one of these tasks
must block. A task is blocked by putting it in a queue. The
behavior of a monitor is determined by the scheduling of four
types of queues.

317

Condition variable queues: There may be any number of
condition variable queues for a given monitor. Each queue
has associated wait and notify methods for putting tasks in
the queue and taking them out.

Theentry queue: Each monitor has one entry queue. When
a task attempts to access a monitor method from outside the
monitor, it is put in the monitor’s entry queue.

Thesignaller queue: Each monitor has one signaller queue.
When a task performs a notify, it is put in this queue.

The waiting queue: Each monitor has one waiting queue.
When a task is removed from one of the condition variable
queues, it is put in this waiting queue.

The last three of these queues will be referred to as monitor
gueues. Processes in the monitor queues are waiting to ac-
quire the monitor lock. A monitor has one of each of these
queues, but in some implementations these queues may be
combined.

When the monitor lock becomes free (because the task hold-
ing the lock returns from a monitor method or enters one of
the queues), the tasks in the three monitor queues compete
for the lock. The behavior of the monitor is determined by the
relative priorities and queue disciplines of the three monitor
queues.

In the monitors we will discuss here, the signaller queue will
have the highest priority of the three monitor queues. When a
task executes a notify method, it is put in this queue and loses
the monitor lock. However, since this queue has the highest
priority, it immediately regains the lock. This is equivalent
to not having lost the lock at all, so for the rest of this paper
we will ignore the signaller queue.

The queues of a monitor (ignoring the signaller queue) are
shown in Figure 1. The arrows show how tasks can move
from one queue to another.

Monitors are classified by the scheduling priorities of the
monitor queues. If we ignore the signaller queue, there are
three possibilities.

Monitors in which the entry queue has a higher priority than
the waiting queue have unacceptable behavior [2] and have
not been given a name. We will call these Entry Priority
monitors. Monitors in which the waiting queue has a higher
priority than the entry queue are generally called Sgnal and
Continue monitors [2, 4] and those in which the two queues
have equal priority are called Wait and Notify monitors [2, 5].

The queuing discipline also affects monitor behavior. For
each of the monitor classifications we consider three queue-
ing disciplines: FIFO, LIFO and random.

3 Dining and Starving Philosophers
The dining philosophers problem is discussed in many text-
books as a classical problem illustrating the concepts of crit-

318

monitor call from
outside the monitor

lock available lock available
H H

c2.wait()

c2.notify()

Figure 1. The queuesassociated with a monitor.

ical regions and synchronization [6, 8, 9, 10]. Five philoso-
phers sit around a circular table. In front of each philosopher
is a plate of rice and between each plate is one chopstick.
In order to eat, a philosopher must pick up both chopsticks
next to his plate. Each philosopher is in one of the states:
thinking, hungry or eating. When a thinking philosopher be-
comes hungry, he changes to the hungry state and attempts
to get both of the needed chopsticks. If he can do so, he
changes to the eating state, eats for a while, and then puts
down the chopsticks and reenters the thinking state. (This
problem is usually described in terms of forks and spaghetti,
but spaghetti is typically eaten with a single fork or a fork
and a spoon rather than with two forks.)

Several operating systems textbooks give essentially the
same monitor solution to this problem [6, 8]. Most discus-
sions of the dining philosopher’s problem require that a so-
lution does not allow a philosopher to starve. For example,
Silberschatz and Galvin state the following:

Finally, any satisfactory solution to the dining-
philosophers problem must guard against the pos-
sibility that one of the philosophers will starve to
death. A deadlock-free solution does not necessar-
ily eliminate the possibility of starvation.

Whether a particular monitor solution avoids starvation may
depend on the implementation of the monitor. It may depend
on the relative priority of the entry and waiting queues and it
may depend on the queue semantics (FIFO, LIFO, random,
etc.). Silberschatz and Galvin and Stallings draw pictures of
monitors representing the queues as FIFO queues, but do not
explicitly discuss this issue.

Most textbooks present the same monitor solution to the din-

ing philosophers problem. With this algorithm, a philosopher
can starve if one of its neighbors is always eating. An exam-
ple of this is shown in Section 6.1. Most standard textbooks
ignore the question of starvation, although Stallings [9] does
discuss this in an exercise. Hartley [3] gives several solu-
tions to the dining philosophers problem that avoid starva-
tion. One simple idea in avoiding starvation is to not allow
a philosopher to eat twice while a neighboring philosopher
remains hungry. Figure 2 gives pseudocode for one such so-
lution, which 1 call the Polite algorithm. It is a modification
of the standard monitor solution given in [8] using the star-
vation avoidance ideas from [3]. The modifications to the
traditional solution are shown in boldface.

monitor diningPhilosophers {
int[] state = new int[5];
boolean[] leftHungry = new booleanl[5];
boolean[] rightHungry = new booleanl[5];
static final int THINKING = O;
static final int HUNGRY = 1;
static final int EATING = 2;
condition[] self = new condition[5];

public diningPhilosophers {
for (int i=0;i<5;i++) {

state[i] = THINKING;
leftHungryl[i] = false;
rightHungry[i] = false;
}
public entry pickUp(int i) {
state[i] = HUNGRY;
test (1) ;
if (state[i] != EATING)
self [i] .wait;
rightHungry (left(i)) = false;
leftHungry (right (i)) = false;
}
public entry putDown (int i) {
state[i] = THINKING;
test (left (1)) ;
if (state[left(i)] == HUNGRY)
leftHungry[i] = true;
test (right (1)) ;
if (statel[right(i)] == HUNGRY)
rightHungry[i] = true;
private test(int i) {
if (state[right (1] != EATING) &&
(state[i] == HUNGRY) &&
(state[left(i)] != EATING) &&

tleftHungry (i) && !rightHungry(i)) {
state[i] = EATING;
self[i] .signal;

}

private int left(int i) {
return (i+1)%5;

private int right (int i) {
return (i+4)%5;

}

Figure2: Thepolite monitor solution of thedining philosophers
problem that avoids starvation.

In a theoretical context, starvation usually means indefinite
blocking, meaning that there is not a bound to the time (or
more precisely, the number of times other philosophers eat)
between hungry and eating for a given philosopher. In a prac-

319

tical context, we would like the bound to be reasonably small.
If there are five philosophers, the bound should be around 5,
not 5000. The Politealgorithm avoids starvation in this sense.
However, a price is paid for this in that some philosophers re-
main hungry longer than they might otherwise have. Another
way of saying this is that the solution does not allow as much
parallelism as the traditional one.

We take an experimental approach to the problem of starva-
tion here. We give probability distributions for the eating and
thinking times for each philosopher and look at the resulting
times philosophers are hungry. We can consider starvation
to occur when a philosopher is hungry for a given time, or
we can compare different algorithms or monitor implementa-
tions by examining average hungry times. In Section 6.2 we
compare the traditional algorithm, which allows starvation,
to the polite algorithm which does not.

4 The Simulation Program

The simulation program is written in Java and can be run ei-
ther locally as a Java application or remotely from a browser
as a Java applet. In either case a window appears as shown
in Figure 3. The window shows the philosophers around a
round table. Each philosopher is shown as a box in a unique
color with a letter inside indicating the state of the philoso-
pher (Thinking, Hungry, or Eating).

Starving Philosophers

(=l

time: O

step Time Step Event Run: 10
Run Count: 10
Log Data

FIFO.

Run Until starvation
Abort.

Gantt Chart

Signal and Continue
staruing off Animation on
Change Log Filename | Replace OId Log

Double| Half | Round |50]

Pause]

Shiowt

Classical Algarithm
Hites Off

Cpen Log
Speed: 1.0

Truncate Time
Show Log

Figure 3: A view of themain simulator window.

The round table represents the monitor. Inside the table,
near the edge is the condition variable queue, sdlf, for each
philosopher. It is represented as a small box of the same
color as the philosopher. Each condition variable queue is
either empty (filled with white) or has the corresponding
philosopher waiting in the queue (filled with the color of that
philosopher).

At the center of the table are the entry and waiting queues
and the monitor lock. The monitor lock is represented by a
small box. When a philosopher task owns the lock, the box

is filled with the color of that philosopher. The entry and
waiting queues are represented by rectangles. They are filled
with strips of color representing the philosopher tasks in the
queue.

The simulator is event driven. It uses a virtual time that is
an integer shown in the bottom left corner of the window.
Each philosopher has a distribution for its thinking and eat-
ing times. Awvailable distributions include constant, uniform,
and exponential. Values from the exponential distribution are
rounded down to an integer.

Three types of monitors are implemented, Sgnal and Con-
tinue, Wait and Notify, and Entry Priority. In the last of these
the entry queue has a strictly higher priority than the waiting
queue. As mentioned in Section 2 this type of monitor has
undesirable properties, but tests show that several Java im-
plementations may have this behavior. Each of these three
types of monitors can have three disciplines for the entry and
wait queues, FIFO (first-in/first-out), LIFO (last-in/first-out)
and random. In the solution to the dining philosophers prob-
lem presented, the condition variable queues can each have
at most one entry.

The simulator can be used in three ways.

In Sngle-step Mode the simulator will run one time step. Af-
ter each step you can examine the state of each philosopher.

In Multiple-step Mode you can run for a given amount of
time.

In Run Until Sarvation Mode the simulator will run until at
least one philosopher has starved.

In any of these modes the simulator can animate the process
so you can see a philosopher task move from one queue to
another as the philosopher changes from thinking to hungry
to eating and back to thinking again.

5 Using the Simulator

The simulator can be used to illustrate different aspects of
monitors and monitor solutions to the dining philosophers
problem.

A class demonstration that uses the simulator in animation
mode can illustrate the ideas of monitor implementation and
illustrate monitor locks. It can illustrate how the tasks move
from the condition variable queues to the waiting queue and
how they compete for the monitor lock when they are in the
entry and waiting queues. If access to the web is available in
the classroom, simply accessing the simulator web page [15]
brings up the simulator in a mode that is useful for class-
room demonstration. By stepping through time, the simulator
animates the movement of the processes among the various
monitor queues in the case of starvation discussed in Sec-
tion 6.1. The speed of the animation can be modified with a
slider and the animation can be paused and resumed at any
time to facilitate class discussion.

The simulator can be used to illustrate how to design experi-
ments to test hypotheses or make comparisons. Once a set of
characteristics of the philosophers has been chosen (humber
of philosophers, thinking and eating times, etc.), a compari-
son can be made between the traditional and polite algorithms
or between queue priority schemes or queueing disciplines.

The simulator can be run until a philosopher starves and the
time until starvation can be compared. Alternatively, the sim-
ulator can be run for a given number of time steps and average
or maximum hungry times can be compared.

The simulator uses the Jeli logging facility [7] to store the
results of the simulation in HTML format so that it can be
viewed by a standard browser. The simulator can produce
tables of data giving information about a given philosopher
(such as average and maximum time in each state) and sum-
mary information. It can trace the states of any philoso-
pher and can produce a Gantt chart showing the state of each
philosopher as a function of time.

6 Sample Results
Several examples of running the simulator are discussed in
this section.

6.1 Gantt Charts

Gantt charts for the simulation run for a case in which the tra-
ditional algorithm exhibits starvation are shown in Figure 4.
The top chart displays the traditional algorithm, and the bot-
tom one displays the polite algorithm. The two charts are the
same until time 5. Philosophers 1 and 3 (P1 and P3) both
become hungry at time 2. P1 starts eating at time 3 when P2
finishes eating. P2 becomes hungry again at time 4 and P1
finishes eating at time 5. In the polite algorithm, P2 noted
that P3 was still hungry when P2 finished eating, so it does
not start eating at time 5. This allows P3 to start eating at
time 6 when P4 finishes eating. In the traditional algorithm,
if one of P2 and P4 are always eating, P3 will starve.

I Thinking EC:ting
0
p
2
)
4
0 5 10 15
I Thinking Elcting
0
p
2
3
El
0 5 10 15

Figure 4: Gantt chartsfor thetraditional (top) and polite (bot-
tom) algorithms.

The simulator allows multiple runs to be displayed simulta-
neously for easy comparison. Two windows like that in Fig-
ure 3 appear simultaneously. The run buttons for these are

320

linked, so that pushing a run button on one causes both sim-
ulations to run in parallel. This is very useful for comparison
in animation mode.

6.2 Consequences of Avoiding Starvation

The polite algorithm avoids starvation in the theoretical
sense. No philosopher is postponed indefinitely, but there is
a price to pay. While no more than four philosophers can eat
before a given hungry philosopher eats, some philosophers
may be delayed from eating, even when both chopsticks are
free. This can increase the average time that a philosopher is
hungry.

Consider the case in which the eating and thinking times
times are exponentially distributed (rounded down to an in-
teger) with an average of 10. The simulator was run using
each algorithm for 100 time steps. Figure 5 shows two tables
generated by the simulator, the top one for the traditional al-
gorithm and the bottom one for the polite algorithm. For the
polite algorithm the maximum hungry time is 16 compared
to 23 for the traditional algorithm, but the average hungry
time for the polite algorithm is larger by about 10 percent.

StatcéCountéTimeéFractioné Aver_ageg Mm Max Stapdgrd
. Time: Time; Time; Deviation

Thinking 23238 47600 1081818 0 M 46691
“Bating 181175350000 6723230138 36060
CTungy 1] 87174000 457805 03835706

State%CounthimegFractioné A"er.ageé Mm Max Stapdgrd
: : Time: Time: Time; Deviation

Thinking 3233046000 1045455 084557
TEating 18 173 344001 935556 003835680
Hungry 1898 8600 515788 0TI 28434

Figure 5: The upper tableis for the traditional algorithm and
thelower oneisfor the polite algorithm.

6.3 Monitor Implementation

The monitor implementation does not affect the dining
philosophers problem very much since it is rare that the
waiting and entry queues simultaneously are not empty, and
when they are, the order in which they are emptied has no
affect. This is because philosophers in the waiting queue
leave the monitor immediately when they are awakened.
However, the discipline of the queues can have an effect
on the output. It is easiest to see this in the case of an
even number of philosophers, PO through P5. Suppose all
philosophers become hungry at the same time and are put in
the entry queue in numerical order. If they are removed in
FIFO order, PO, P2, and P4 will eat. If this continues, half of
the philosophers could be eating at any time.

However, if PO is taken out followed by P3, only PO and P3
will be allowed to eat and at least one of the philosophers
will have to wait through two rounds of eating before he can
eat.

7 Conclusions

The dining philosophers simulator can be used in several
ways. It can be used to teach about monitors and monitor
implementation options, it can be used to teach about the
dining philosophers problem and it can be used as a testbed
for teaching experimental techniques in computer science.

The web site [14] contains a number of resources for using
the simulator. You can run the simulator directly from the
web, storing the output files on our server so that they can be
viewed or printed using a standard browser. All of the exam-
ples discussed here can be run from the web. The simulator
can be downloaded from the web so that it can be run locally.
A user’s guide is also available on the web page.

8 Acknowledgments
This work has been supported by an NSF grant: AWeb-Based
Electronic Laboratory for Operating Systems and Computer
Networks, DUE-9752165.

References

[1] Brinch Hansen, P., “Monitors and Concurrent Pascal:
A personal history,” 2nd ACM Conference on the His-
tory of Programming Languages, 1993, pp. 1-25.

[2] Buhr, P. A. and Fortier, M., “Monitor classification,”
ACM Computing Surveys, 27, (1), 1995, pp. 63-107.

[3] Hartley, S., Concurrent Programming, The Java Pro-
gramming Language, Oxford, 1998.

[4] Howard, J. H., “Signalling in monitors,” Proceedings
of the Second International Conference on Software
Engineering, 1976, pp. 47-52.

[5] Lampson, B. W., and Redell, D. D., “Experiences
with processes and monitors in mesa,” Commun. ACM
23(2), 1980, pp.105-117.

[6] Nutt, G., Operating Systems, A Modern Perspective,
2nd Edition, Addison Wesley, 2000.

[7] Robbins, S., “Remote logging in Java using Jeli: A fa-
cility to enhance development of accessible educational
software,” Proc. 31st S GCSE Technical Symposiumon
Computer Science Education, 2000, pp. 114-118.

[8] Silberschatz, A. and Galvin, P. B., Operating System
Concepts, 5th edition, Addison-Wesley, 1998.

[9] Stallings, W., Operating Systems, 2nd edition, Prentice
Hall, 1995.

[10] Tanenbaum, A. S., Modern Operating Systems, Pren-
tice Hall, 1982.

[11] Tichy, W. F., “Should computer scientists experiment
more?” IEEE Computer, May 1998, pp. 32-40.

[12] Tichy, W. F., et al., “Experimental evaluation in com-
puter science: A quantitative study,” J. Systems and
Software, Jan 1995, pp. 1-18.

[13] Zelkowitz, M. V. and Wallace, D. R., “Experimen-
tal models for validating technology,” |IEEE Computer,
May 1998, pp. 23-31.

[14] http:/ivip.cs.utsa.edu/nsf/

[15] http:/ivip.cs.utsa.edu/nsf/sf/

321

