
An Address Translation Simulator

Steven Robbins
Department of Computer Science
University of Texas at San Antonio

srobbins@cs.utsa.edu

ABSTRACT
Virtual memory is a major topic in undergraduate operat-
ing systems courses. One aspect of virtual memory, address
translation, is often covered in an abstract way. When exam-
ples are given, only a piece of the translation is done, using a
small translation lookaside buffer or a small single-level page
table. Since most students learn best by doing rather than
watching, the topic is best understood by having students
do realistic address translations. This is problematic since it
involves lookup from several large tables of data which are
difficult to fit on a piece of paper. The address translation
simulator described here solves this problem by presenting
the student with complete page tables in a way that allows
simple navigation of these tables. The simulator can be used
for both teaching and student evaluation.

Categories and Subject Descriptors
K.3 [Computers & Education]: Computer & Information
Science Education—Computer Science Education

General Terms
Virtual memory, address translation

Keywords
operating systems

1. INTRODUCTION
Virtual memory and address translation are standard top-

ics in an undergraduate operating systems course. Although
address translation in modern computers is mostly done by
hardware, the topic of address translation is usually taught
in the undergraduate operating systems course because that
is where virtual memory is typically taught. Operating sys-
tems courses that delve into the details of the operating
system by having students write (or modify) an operating
system are usually good at giving students hands-on expe-
rience with the details of operating system issues. Since

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE ’05 February 23-27, St. Louis, Missouri, USA
Copyright 2005 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

it is primarily a hardware topic, address translation is an
exception to this.

Although students learn best by doing rather than watch-
ing, most presentations of address translation are abstract
and cover only the simplest of address translation problems,
mainly because of the nature of address translation. Trans-
lation requires access to a large amount of data: a transla-
tion lookaside buffer and at least one page table. Since this
information does not easily fit on a sheet of paper, instruc-
tors find it difficult to design problems that students can do.
Also, hand manipulation of binary address strings up to 64
bits in length is prone to errors. Even a hexadecimal repre-
sentation of a 64-bit address is daunting, and hexadecimal
is not often not suitable because the sizes of bit fields are
often not multiples of 4.

This paper discusses a simulator that makes it simple (and
fun) to manipulate address bit fields and allows students
to practice address translation using a translation lookaside
buffer (TLB) and single or 2-level page tables. The sim-
ulator can also be used for evaluation of student skills by
keeping a log file in HTML format that can be displayed
with a standard browser or printed. The simulator is writ-
ten in Java and will run on any computer system having a
Java runtime environment. It is available for download or
can be run directly from the web without the need for any
installation.

The address translation simulator is part of a suite of sim-
ulators that have been developed for the undergraduate op-
erating system curriculum [5]. These simulators have a con-
sistent look and feel so that students who have used one can
easily master another.

2. ADDRESS TRANSLATION IN MODERN
TEXTBOOKS

Topics in address translation that are typically addressed
in modern operating systems textbooks [1, 2, 3, 6, 7, 8]
include:

partitions
single-level page table
multiple-level page table
segmentation
segmentation with paging
inverted page tables

This paper concerns itself with address translation using
a TLB with one and two level page tables. Experience has
shown that students do not grasp this concept until they
have done problems involving real numbers. It is partic-
ularly difficult to produce problems of this type and some

TLB
page frame

5 9
3 7
2 4
6 3

page table
valid frame

0 5
1 6
1 4
1 7
0 8
1 9
1 3

. . .

Figure 1: A small TLB and the beginning of a page
table.

textbooks do not even try. The exercises involving address
translation in some books [2, 3, 6] deal only with questions
concerning the location or number of bits in various fields of
the virtual address or the size of page tables. Some books
do not even have exercises on this topic [1] while others [7,
8] have exercises involving a small (6-16 entries) single-level
page table. None of the standard operating systems text-
books have any exercises combining TLB lookup with page
table lookup or using multilevel page tables.

It is useful to have students actually perform address
translation in some simple cases. I have found that about
half of the students in my undergraduate operating systems
courses cannot do this without practice, indicating that they
really do not understand the process. Address translation
requires looking up an entry in a TLB and then possibly
looking through one or more page tables. Just displaying a
typical TLB requires a lot of space. A full page table will
not easily fit on a piece of paper. For the past decade, I
have been using a toy problem based on the TLB and page
table shown in Figure 1. The page size is 256 bytes. I give
my students a few addresses such as the ones below and ask
them to determine the page number and the physical ad-
dress or if a page fault occurs. I also combine this with an
access time calculation.

a) 01010100010
b) 10001000101
c) 00110110100

While this type of problem is useful, it is still much too
small to test understanding. A similar problem with a 2-
level page table would be unmanageable on paper, even if
only the page tables needed to do the problem are given.
Since part of the problem is to determine which second-
level page table to use, giving only the needed page tables
defeats the purpose of the exercise. The Address Translation
Simulator allows students to experiment with more realistic
problems in address translation.

3. GOALS OF THE ADDRESS TRANSLA-
TION SIMULATOR

The goals of the address translation simulator are twofold:
practice and testing. In practice mode, help is available for
each stage of the translation. In testing mode, help can also
be available, but each action of the student is recorded. In
either mode, the simulator displays a logical address along
with the parameters of the system. Sample parameters are
shown in Figure 2.

There are several levels of practice mode available depend-
ing on the skill level of the user. Help menus can be avail-

Page Table Levels 2
Page Size 4096
Level 2 Page Table Size 512
Virtual Address Bits 30
Physical Address Bits 23
TLB Entries 16
Page Table Width (bytes) 4

Figure 2: Parameters for the simulator

able for all objects displayed. At the lowest level of skill, a
progress list like the one shown in Figure 3 shows the steps
the user must take to complete the address translation. As
steps are completed, a colored dot appears at the start of
the item, indicating that it has been completed. Clicking on
any of these items produces a dynamically generated help
menu describing in detail what needs to be done. Two pos-
sible menus obtained by clicking on the first unchecked item
in Figure 3 are shown in Figure 4. Since the menus are dy-
namically generated, the information shown depends on the
current state of the address translation. The upper menu is
used if the TLB has not yet been displayed. Clicking on the
do it! line displays the TLB and changes the menu accord-
ingly. The lower menu corresponds to the case in which the
TLB has been displayed but the user has incorrectly deter-
mined the sizes of the page number and frame number fields.
As the students become more skilled, the progress list and
help menus can be removed, requiring the students to know
which steps must be completed.

Figure 3: A progress list for a single-level page table.

Figure 4: Two possible help menus for the 4th entry
of Figure 3.

In testing mode there are several options as to how much
help the student can get, starting with complete hints as

to what to do next as in practice mode up to no indication
as to correct procedure until the physical address is found.
Testing mode can be set up with a fixed number of lifelines
in which the user can ask for help a certain number of times.

In testing mode all actions of the user are logged, and
written logs can be produced with varying degrees of detail.
At the highest level of detail all actions by the user are
reported. At the lowest level only the number of correct
and incorrect answers are displayed.

The log can be automatically sent to the instructor (or to
another account) by email so that the log cannot be modified
by the student. Alternatively, the log can be saved to a file
in HTML format so that it can be displayed by a browser
or printed.

The simulator can be used to enhance and test the follow-
ing skills necessary to the understanding of address transla-
tion:

Identifying the fields of a logical address
Identifying the fields of a physical address
Determining the sizes of the fields in the TLB
Looking up a page number in a TLB
Calculating the address of a page table entry
Looking up an entry in a page table
Using the valid bit

4. LOOK AND FEEL
The simulator has the same look and feel as other sim-

ulators developed for the operating systems curriculum [5].
Three new general purpose widgets have been added: a clip-
board, a segmented string and a calculator.

Binary fields are manipulated in the simulator using a
familiar copy and paste paradigm. Copying a string repre-
senting a binary number moves it into a clipboard. There is
only one clipboard, but the contents are displayed in each
widget that uses it. A Calculator widget, shown in Figure 5
allows binary numbers to be manipulated in simple ways:
add, subtract, multiply, divide and shift. Numbers are ma-
nipulated by copying them into the clipboard (the Select
operation), pasting them (Paste) into the x or y fields of
the calculator, performing an operation, and copying the
result back into the clipboard (Select again).

Figure 5: A calculator widget.

An example of a simple operation using the clipboard is
the lookup of a page in the TLB. To do this, the user places
the appropriate bit field of the logical address in the clip-
board. The same clipboard is shared by the TLB, so pushing
the Lookup button on the TLB locates the corresponding
entry. This is explained in more detail in the next section.

Some operations such as the calculation of the memory
address of page table entry require the calculator. The start
address of the page table is put in the clipboard. The value
will then be shown in the clipboard of the calculator (top
line of Figure 5). Pushing the Paste button of the x value

of the calculator (second line of Figure 5) sets the value of
x in the calculator. Next, select the page number in the
logical address and similarly paste it in the y field of the
calculator. If the page table entries are 4 bytes each, shift
the page number left twice by pushing the shift left button
(<<) for the y value. The add button (x+y) puts the sum in
the z value of the calculator, and the corresponding Select
button puts the result in the clipboard, making it available
to the memory module.

The Help button of the calculator displays general infor-
mation about using the calculator. Depending on the level
of help selected, it can display additional information when
appropriate, such as Do not forget to shift the page number
to the left.

5. SINGLE PAGE TABLE
In this section we describe using the address translation

simulator in practice mode with a TLB and single-level page
table. The user is presented with an address translation
problem in a window like the one shown in Figure 6.

Figure 6: An address translation problem using a
single-level page table.

The page size is 4K bytes, the virtual address is 30 bits,
and the physical address is 23 bits. Page table entries con-
tain 4 bytes and the TLB has 16 entries. The starting ad-
dress of the page table is shown along with the logical ad-
dress of 000111010110111100110100010101. Below the logi-
cal address is a place for the user to fill in the corresponding
physical address. The buttons below the physical address
are for the user to report either having found a physical
address or that a page fault will occur. Below this is the
status of the physical address determination. When one of
the above buttons is pushed, it either reports that the cor-
responding value was correct or incorrect. At the bottom of
the window are some buttons for popping up various win-
dows.

The steps required to solve this problem are shown in Fig-
ure 3. Since a single-level page table is being used, the logical
and physical addresses each have two parts, an offset and a
page or frame number. The first step tested by the simula-
tor is the determination of the boundary between the offset

and the rest of the address. Both the Logical Address and
Physical Address widgets are shown in Figure 6 and start
in Segment mode. In this mode an address is segmented
by clicking the mouse in the appropriate place on the ad-
dress. If done correctly, the step is indicated in the progress
list. The logical and physical addresses are displayed in a
segmented string widget that allows the string shown (in
this case a binary number) to be divided into parts. In this
case there is only one dividing line, and if students makes a
mistake, they can just click again in another place.

Once the students have segmented the logical and phys-
ical addresses, they can change the logical address widget
to Select mode and the physical address to Paste mode.
Now, clicking on one of the fields of the logical address puts
that field into the clipboard. Clicking on a field of the phys-
ical address pastes a copy of the clipboard into that field.
Two clicks copies the offset from the logical address to the
physical address.

The next step is the lookup in the TLB shown in Figure 7.
First the student segments the TLB into fields containing
page and frame numbers. The process is similar to the seg-
menting of the logical or physical address, except that one
click segments all of the entries in the TLB. After segment-
ing the TLB, students click on the Lookup button to look
up the page number contained in the clipboard. If the sim-
ulator finds a corresponding entry, it highlights the frame
number and puts the frame number in the clipboard. Al-
ternatively, if students see a matching page number in the
TLB, they can just click on the corresponding frame num-
ber after setting the TLB to be in Select mode. In either
case, if the page is found in the TLB, students can put the
corresponding frame in the physical address by clicking on
the appropriate field in the physical address. This action
pastes the frame address into the physical address from the
clipboard.

Figure 7: The TLB after a successful lookup.

If the page is not in the TLB, students must examine the
page table. The simulator provides several views of memory.
One view is the page table view. For single-level page tables
the simulator displays page table entries (with valid bit) for
the entire page table as shown in Figure 8. Students can
either scroll down to the needed entry (tedious if the page

table is large) or can put the entry number in the clipboard
and click the Entry button on the memory display. When
there is only one page table, students do not have to set
the address of the start of the table. A lookup is done by
putting the page number into clipboard and clicking the
Entry button.

Figure 8: The single-level page table view of mem-
ory after a successful lookup.

6. TWO-LEVEL PAGE TABLE
There are several ways of implementing 2-level page ta-

bles. For this simulator, the top level page table entry
contains a valid bit and the frame number of the start of
the corresponding second-level page table. The second-level
page tables contain valid bits and frame numbers. A page
fault can occur at either level. The TLB entries, if used,
contain the combined first and second-level page numbers
and a frame number. If an entry is present in the TLB, the
frame number is directly available and no page table lookups
are needed. In this case the procedure is the same as for a
single-level page table.

If the combined page number is not in the TLB, students
must segment the logical address again so that it is divided
into three parts. The high order field is the first-level page
number. Students select this to use as an index into the first-
level page table. If the corresponding entry is invalid, a page
fault occurs. Otherwise a second-level page table lookup is
necessary. Figure 9a shows the result of a successful first-
level lookup. After the entry is found, the frame number of
the start of the second-level page table is in the clipboard.
Students now switch to the second-level page table view.
In this view students need to indicate the starting frame
number of the page table. Since the starting frame number
is in the clipboard from the previous step, students should
click the Frame button. After selecting the second-level
page number from the logical address, do an Entry lookup
in the second-level page table. Figure 9b shows the result of
this. The frame number is 1111011.

The address translation simulator assumes that page ta-
bles start on frame boundaries, which is almost always the
case. When multi-level page tables are used, page tables
are often one frame in size. In the first-level page table of
Figure 9a, as in the single page table case, the start address
is fixed (there is only one such table per process) and each
line gives a table entry labeled with the entry number. In
the second-level page table shown in Figure 9b, the starting
frame number of the page table must be set by the user.
Students can do this either by putting the frame number in
the clipboard and pushing the Frame button or by putting
the address of the desired entry in the clipboard and pushing
the Addr button. In either page table at most 16 entries are
displayed on the screen and the students can scroll through
the entire page table if they desire.

a) b)

Figure 9: The first-level page table view of memory
(left) after a successful lookup and the correspond-
ing second-level page table (right).

Figures 8 and 9 show page table views of memory. In
these views, data is arranged in blocks that correspond to
the width of the page table and valid bits are shown. Stu-
dents can also display a frame of physical memory in a more
generic way. Figure 10 shows a frame of memory with a
data width of 4 bytes. The valid bits are not available from
this memory view. A separate valid bit view may be used to
determine whether a given page number is valid. This sepa-
rate view is more appropriate for those machines that store
the valid bits in the MMU rather than in the page tables.

7. CONCLUSIONS
The address translation simulator can be used in three

ways: for demonstration, for practice and for evaluation.
Instructors can perform in-class demonstrations of how ad-
dress translation is done. After students have seen the demon-
stration, they can use the simulator to practice performing
address translations. The practice problems can be run with
varying levels of help, from guiding the students at each step

Figure 10: The view of memory arranged in 4-byte
words.

to just providing hints if a student gets stuck. A user’s man-
ual is available on line.

Lastly, the simulator can be used for testing. The simula-
tor can generate a log for the instructor showing in a settable
detail how the student did. Usually, instructors only need
to test for completion. That is, instructors should ignore
student runs in which errors were made and just check to
see that at least one run of each type was computed without
error.

The simulator can be run directly from a browser [4] with-
out the need of any installation. If customization is required,
the simulator can be downloaded and installed on any host
that has a modern Java virtual machine

8. ACKNOWLEDGMENTS
This work has been supported by an NSF grant: A Course

in Experimental Techniques for Computer Science Majors:
Proof of Concept, DUE-0088769.

9. REFERENCES
[1] W. S. Davis and T. M. Rajkumar, Operating Systems, A

Systematic View, Addison Wesley, 2005.
[2] H. M. Deitel, P. J. Deitel and D. R. Choffnes, Operating

Systems, Third Edition, Prentice Hall, 2003.
[3] G. Nutt, Operating Systems, Third Edition,

Addison-Wesley, 2003.
[4] S. Robbins, The Address Translation Simulator, 2004.

Online. Internet. Available WWW:
http://vip.cs.utsa.edu/nsf/address/run/

[5] S. Robbins, Simulators for teaching operating systems,
2003. Online. Internet. Available WWW:
http://vip.cs.utsa.edu/nsf/simulators

[6] A. Silberschatz, P. B. Galvin and G. Gagne,, Operating
System Concepts, Sixth Edition, John Wiley and Sons, Inc,
2002.

[7] W. Stallings, Operating Systems, Fifth Edition, Prentice
Hall, 2004.

[8] A. Tanenbaum, Modern Operating Systems, Second
Edition, Prentice Hall, 2001.

