
A Disk Head Scheduling Simulator

Steven Robbins
Department of Computer Science
University of Texas at San Antonio

srobbins@cs.utsa.edu

Abstract

Disk head scheduling is a standard topic in undergraduate operat-
ing systems courses. Disk drives were once fairly simple devices
with little intelligence. Disk head scheduling and bad block map-
ping were done exclusively by operating systems. As disk drives
became larger and faster, they took on some of these tasks. Modern
drives often have a large cache and hide their internal structure from
the outside world. In spite of changes in disk technology, the teach-
ing of disk head scheduling has changed little over the last decade.
This paper describes a disk head scheduling simulator that allows
students to explore traditional disk scheduling algorithms as well as
the consequences of modern disk technology. The simulator, which
is written in Java and is freely available, can be run remotely from
a browser or downloaded for local execution. We present methods
for modifying the traditional curriculum to make the presentation
of disk head scheduling more relevant and interesting.

Categories & Subject Descriptors
K.3 [Computers & Education]: Computer & Information Science
Education - Computer Science Education

General Terms
Disk scheduling

Keywords
disk, scheduling, logical block addressing, LBA, simulation

1 Introduction

Disk scheduling algorithms have been studied for many years [1]
and are discussed in most undergraduate operating systems text-
books [2, 4, 5, 6]. The treatment of disk scheduling in these books
has changed little in the last 10 years, even though there have been
major changes in disk technology.

A standard treatment of disk scheduling is usually preceded by a dis-
cussion of traditional disk structure, describing the disk as a number
of platters with a head for each surface. Each surface is divided into
a fixed number of tracks, and each track has a fixed number of sec-
tors. Each surface has one disk head, and the disk heads move in
unison. At any given time, the heads can read from sectors on a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’04, March 3-7, 2004, Norfolk, Virginia, USA.
Copyright 2004 ACM 1-58113-798-2/04/0002...$5.00.

given track from one surface. The collection of sectors available
without moving the head is called a cylinder.

Disk drives have constant angular velocity. Unlike CDROMs, they
always spin at the same rate, independent of the head position. As a
result, the surface of the disk moves past the disk head faster when
the head is over the outer tracks of the disk than when it is over the
inner tracks. If each track has the same number of sectors, the sec-
tors are physically bigger on the outer tracks. The physical proper-
ties of magnetic storage limit the number of sectors per track based
on the bit density of the innermost tracks, resulting in inefficient use
of the disk surface.

Modern disk drives improve storage capacity by putting more sec-
tors per track on the outer tracks than on the inner ones. The disk
geometry is made transparent to the operating system in one of two
ways. One method is to present a traditional, but physically in-
accurate, view of the disk to the operating system. This approach
requires no change in the operating system software. The disk ap-
pears to have a given number of heads (surfaces), tracks per surface,
and a fixed number of sectors per track. The numbers are chosen
so that the product of these three numbers equals the total number
of available sectors on the disk. The operating system uses this log-
ical view to schedule accesses and to communicate with the disk
controller. The disk controller converts the three numbers (logical
head, logical track, logical sector) into three numbers corresponding
to the physical head, physical track, and physical sector.

Another method of handling nonuniform disk geometry is Logical
Block Addressing (LBA). With LBA, the operating system views
the disk as an array of sectors with no indication of how they are
laid out on the disk. The operating system must understand LBA and
communicate with the disk controller using a logical block address
instead of separate head, track and sector numbers.

This paper presents a brief discussion of the traditional treatment
of disk scheduling in Section 2. Section 3 introduces an interactive
simulator that allows students to experiment with different tradi-
tional algorithms. Section 4 describes additional uses of the sim-
ulator. The simulator is freely available and runs on any machine
with a Java runtime system.

The performance impact on disk scheduling by an operating system
using a logical view of the disk is discussed in Section 5. The effects
of LBA on disk scheduling are discussed in Section 6. The trans-
parent mapping of bad sectors simplifies disk management from
the system administrator’s point of view. The effects of bad blocks
on disk scheduling are discussed in Section 7. Section 8 describes
some student projects and the use of the simulator in the curriculum.
Finally, Section 9 discusses some limitations of the simulator and
its availability.

2 Traditional Disk Scheduling

Disk scheduling discussions are mainly concerned with seek time,
the time it takes to move the heads from one cylinder to another.
The rotational latency, the time needed to wait for the head to be
over a particular sector, is usually not considered. The discussions
assume that the operating system has the information needed to do
the scheduling. That is, the operating system knows which physical
cylinder is being accessed. This is a reasonable assumption when a
disk has the traditional structure and all tracks have the same number
of sectors. If the block number is known, a simple division gives
the cylinder number.

Most operating systems textbooks treat a subset of the standard
disk scheduling algorithms. For a description of these algorithms,
see [7]. Operating systems textbooks typically discuss the follow-
ing simplified disk scheduling problem: Suppose you have a fixed
list of cylinders that need to be accessed. In what order should
the accesses take place? Some texts mention rotational latency and
transfer time, but these costs are typically ignored when disk head
scheduling is described. The typical algorithms discussed include:

First-Come, First Served (FCFS) in which the seeks are done in
the order requested.

Shortest Seek Time First (SSTF or SSF) in which the next seek
is to the position closest to the current head position. Most books
report that SSTF typically requires less total head movement than
FCFS but that it can cause starvation when there are a sufficient
number requests in a localized area of the disk.

SCAN and LOOK are sometimes called elevator algorithms. In
these algorithms the disk head travels from one end of the disk to
the other and back again. SCAN always goes to the extreme ends
of the disk even if there are no requests there, while LOOK changes
direction at the largest and smallest requested cylinder. Some books
completely ignore the SCAN version or assume that the algorithm
they call SCAN behaves like LOOK. The SCAN and LOOK algo-
rithms spend more time at the center of the disk than at the ends.

C-SCAN and C-LOOK are variations in which requests are han-
dled in only one direction. These algorithms tend to minimize the
maximum delay experienced by new requests.

FSCAN, or frozen SCAN is like SCAN or LOOK but freezes the
list of blocks to be scanned once scanning starts. New requests
are put in a separate buffer. This is essentially a double buffering
technique that gives preference to old requests over new ones.

3 The Disk Head Scheduling Simulator

The disk head simulator allows students to explore all of the algo-
rithms described in Section 2. The simulator can be run either as a
Java applet, remotely from a browser, or locally as a Java applica-
tion. The results of the simulation can be displayed graphically or
in tables.

In Silberschatz [4], the algorithms FCFS, SSTF, SCAN, C-SCAN
and C-LOOK are compared assuming that the head starts at cylinder
53 and the queue of pending requests contains 98, 183, 37, 122, 14,
124, 65 and 67. We will refer to this as Experiment 1. Figure 1
shows diagrams created by the simulator similar to Figures 14.1 and
14.2 of the Silberschatz book for the FCFS and SSTF algorithms.
Each horizontal line represents a scan of the disk in one direction,

with tic marks at the positions of accessed blocks. Figure 2 shows
various statistics calculated for these two runs. FCFS has a mean
seek of 71.11 and SSTF has a mean seek of 26.22. Figure 3 shows
the actual seeks done for the FCFS algorithm. Similar data can be
produced for the examples given in other textbooks.

Figure 1: Two algorithms from Experiment 1.

Figure 2: Summary data for Experiment 1.

Figure 3: Run data for the FCFS algorithm in Experiment 1.

In the examples given in most textbooks, a few requests (less than
a dozen) are assumed to be pending, and no other requests arrive
while these requests are being handled. This, of course, makes it
easy to manually trace the algorithms and illustrate how the algo-
rithms differ. To use the simulator with this type of example, create
a file containing the list of tracks to be accessed. The simulator
also allows you to specify the arrival time of each request. In the
textbook examples, the arrival times are all 0.

The simulator is designed to make it easy for students to perform
experiments. An experiment consists of a number of runs in which
only a few factors vary. An experiment to compare different disk
head scheduling algorithms uses the same requests in each run
and only changes the head movement algorithm. Comparing head
movement algorithms is only one of a large possible number of ex-
periments. Some are described in Section 8.

The simulator uses three types of algorithms to specify where the
sectors are on the disk, the order in which seeks occur, and how
long it takes to seek.

Layout
While most textbooks compare the head movement algorithms in
terms of cylinder numbers, file systems are typically organized in
blocks, where each block corresponds to a given number of sec-
tors. With a uniform layout, the number of sectors per cylinder is
fixed. The Layout column in Figure 2 indicates that the simulations
were done with a Uniform 1 layout, meaning 1 sector per cylinder.
With this layout, sector numbers are the same as cylinder numbers,
allowing the simulator to take cylinder numbers as input.

The simulator can also handle a zoned layout. Zoned layouts are
common on modern disk drives. In a zoned layout the cylinders are
grouped with each group having a different uniform layout. Such a
layout allows the disk to be used more efficiently, since more sectors
can fit on an outer track than on an inner one.

Seek Movement
Textbooks typically focus on the seek movement algorithm. The
simulator supports FCFS, SSTF, SCAN, LOOK, C-SCAN and C-
LOOK algorithms, as well as other algorithms including FSCAN.
The simulator allows the double buffering technique used by
FSCAN to be applied to any of the algorithms. Double buffering
is particularly useful with SSTF, as this algorithm can indefinitely
postpone a request that is far from the current position.

Seek Time
Seek times usually have two components: a fixed time which is in-
dependent of the distance the head needs to travel, and a time based
on the number of cylinders the head needs to move. The simplest
type of algorithm is linear. The algorithm Linear 2.00 .10 shown
in Figure 2 means that a seek takes 2 units of time plus .1 unit per
cylinder traveled. The simulator can then calculate statistics based
on both distance traveled and time. Figure 2 shows the SSTF algo-
rithm has a mean seek movement of 26.22 cylinders and a mean seek
time of 4.40 units of time. The simulator also calculates turnaround
time, the time between when a request comes in and when the cor-
responding seek is finished. Figure 3 shows the movement and time
for each individual seek in a run.

4 Beyond the Textbook

A simple list of cylinders that all arrive at time 0 may be sufficient
for illustrating how scheduling algorithms work, but a more realistic
and much larger set is necessary to compare the performance of
different algorithms.

An alternative to specifying a list of sectors is to specify a first
arrival time, a distribution of interarrival times, and a distribution
of sector references. The simulator allows you to specify several
sets of these distributions to simulate different types of concurrent
loading.

Experiment 2 compares several algorithms with with two types of
references. One set of references accesses a small section of the disk
often, as would be the case when a single process is making many
random accesses to a single file. The other set of references accesses
the disk in a more uniform manner. The five algorithms compared
are FCFS, SSTF, C-LOOK, SSTF DB (SSTF with double buffering)
and C-LOOK DB. Without the double buffering, SSTF tends to
keep the disk head in one area when there are sufficient references
to keep it busy. Figure 4 shows a table of summary statistics for
Experiment 2.

Figure 4: Experiment 2 has two types of requests.

You can understand the results of this simulation with a simple an-
alytical analysis. The runs were made assuming a seek time of .5
plus .05 times the number of cylinders to move. Requests are gen-
erated from two distributions. One chooses cylinders uniformly in
the range 40 to 50, with a constant arrival rate of 1 ms for a total
of 500 requests. The other distribution chooses cylinders uniformly
in the range 0 to 200 every 5 ms for a total of 100 requests. All
requests have been made by 500 ms. Exactly 6 new requests come
in every 5 ms, or .83 ms per request. As requests come in, they are
put in a queue of pending requests. The requests can be handled if
the average seek time is less than the average interarrival time.

The FCFS algorithm must handle requests in the order they are re-
ceived. There are two type of seeks. The short seeks stay in the
range 40 to 50, average about 3.3 cylinders and have a seek time of
about .67 ms. The long seeks are between a cylinder in the range
40 to 50 and a randomly chosen cylinder between 0 and 200. These
average about 65 cylinders and have an average seek time of about
3.75 ms. Out of every 6 seeks, 4 are small and 2 are large, giving an
average seek time of about 1.7 ms. Since this is greater than the av-
erage interarrival time of .83 ms, FCFS cannot handle these requests
fast enough. We see from Figure 4 that the mean seek time for FCFS
is 1.58, close to our calculated value of 1.7. The maximum size of
the queue of pending requests is 310. Other experiments show that
the mean seek time remains about the same but the maximum queue
size and turnaround time grow indefinitely if requests are allowed
to come in at the same rate.

The other algorithms are more stable. As the number of pending
requests grows, the average seek time decreases. The number of
pending requests increases until the seek time is less than the inter-
arrival time. For example, consider the SCAN algorithm that starts
a scan with 18 pending requests. There are about 15 requests in the
range 40 to 50 and 3 elsewhere. The 18 requests can be handled in

.5*18 + .05*200 = 19 ms, giving an average seek time of about 1.1
ms. This is slightly greater than the average interarrival time of .83,
so 18 pending requests are not enough. How many requests need to
be pending to make the average seek time equal to the interarrival
time? The answer can be found by solving the equation: .5*Q +
.05*200 = Q*.83. This is satisfied by Q = 30. We expect that a
slightly smaller queue will do for the LOOK algorithm. As shown
in Figure 4, the algorithms other than FCFS have a maximum queue
size between 20 and 34 and their mean seek time is almost equal to
the average interarrival time. For these algorithms, the numbers do
not change much if the simulation is run for longer periods of time.

It is tempting to compare FCFS and SSTF in disk head scheduling
to FCFS and SJF in CPU scheduling. In the simplest case, all of
the requests are available when the algorithm starts and no new
requests come in. In this case it can be shown that SJF scheduling
has the smaller (or equal) average waiting time. The same applies
to turnaround time which also counts processing time. What can be
said about FCFS and SSTF in disk head scheduling? The analog of
processing time for disk head scheduling is the amount of time to
seek to the requested cylinder. In this case, unlike CPU scheduling,
the processing time depends on the current state of the system, that
is the current position of the disk head. It is possible for FCFS to
have a shorter average turnaround time than SSTF.

Consider Experiment 3, in which the disk head is at cylinder 10
and there are seeks pending to cylinders 5, 16, 17, 18 and 19. FCFS
might process these in the order 16, 17, 18, 19, 5 while SSTF would
always use the order 5, 16, 17, 18, 19. If the time to seek is equal
to the distance, the turnaround times under SSTF are 5, 16, 17, 18,
and 19, giving a total of 75. Under FCFS the turnaround times are
6, 7, 8, 9 and 23 for a total of 53. The total head movement for
SSTF is shorter (19) than for FCFS (23). However, although SSTF
has a smaller total seek time, in this case it has a larger turnaround
time than FCFS. Figure 5 shows the simulator results for this simple
example.

Figure 5: Experiment 3, compares FCFS and SSTF.

5 Logical Sectors

Suppose an operating system has a logical view of a disk that dif-
fers from the physical view. The operating system’s (logical) view
of the disk is described by three numbers, the number of heads,
LogicalHeads, the number of tracks per surface, LogicalTracks, and
the number of sectors per track, LogicalSectors. The total number
of sectors is

LogicalHeads × LogicalTracks × LogicalSectors.
The physical disk has a number of heads, PhysicalHeads, a number

of tracks per surface, PhysicalTracks and a number of sectors per
track, PhysicalSectorsi. This last value depends on the track num-
ber, i. The total number of sectors on the disk is

PhysicalHeads × ∑
i
(PhysicalSectorsi).

FCFS, SCAN, and LOOK scheduling are not affected by the differ-
ence between the logical and physical views of the disk. However,
SSTF scheduling might not behave as well when the operating sys-
tem does not have a correct physical view of the disk structure.

You can specify separate layout algorithms for the operating system
view and the physical view. The operating system view layout is
used to decide which block to access next, while the physical system
view is used to determine how long it takes to do a seek. Figure 6
shows the results of Experiment 4 in which the operating system
thinks the disk layout is uniform, but the actual disk layout has three
zones. Three runs are shown. In each run the physical disk has 3
zones of 10 cylinders each. The first zone has 8 sectors per cylinder,
the second has 16 and the last has 24. In the first run, the operating
system view is the same as the physical view. In the second run,
the operating system view is uniform with 10 cylinders of 16 tracks
each. The seek request turnaround time is slightly larger when the
operating system has an incorrect view. The third run is described
in the next section.

Figure 6: Experiment 4 compares different views of the disk.

6 Logical Block Addressing

In Logical Block Addressing, the operating system communicates
with the disk controller using absolute sector numbers. The logical
view of the disk is an array of sectors. The operating system does
not have any information about the cylinder at the head position.
As before, FCFS, SCAN and LOOK scheduling are not affected by
this view. SSTF cannot be used since the operating system does
not have information on track numbers, but it can approximate this
with NBNF (Nearest Block Number First). The penalty in using
this instead of SSTF is at most one cylinder per seek, so NBNF
performance should be close to that of SSTF. The third run shown
in Figure 6 shows the result when the operating system uses NBNF.
The seek request turnaround time is slightly larger than when the
operating systems has the correct view of the disk structure.

7 Bad Blocks

The operating system can handle bad disk blocks by preventing
these blocks from being allocated to a file or by mapping bad blocks
to reserved blocks. In either of these cases, the existence of bad
blocks does not change how well the operating system understands
the disk layout. The only penalty imposed is the added fragmenta-
tion of files.

Modern disk drives handle bad sectors transparently. To the operat-
ing system, the disk appears to have no bad blocks. Bad blocks are
transparently mapped by the disk controller to blocks specifically
reserved for this purpose. One method is to keep some spare sec-
tors on each track or cylinder to act as replacements for bad sectors.
In this case the mapping does not incur any additional seek penalty
but there may be additional rotational latency in accessing mapped
sectors.

Another possibility is for the reserved sectors to be on cylinders
reserved for replacements of all bad sectors. If this is transparent to
the operating system, the operating system may make an incorrect
decision when picking the next block to access. Of the algorithms
discussed here, only FCFS is not susceptible to this type of error.

The simulator allows you to specify a fraction of bad blocks to be
mapped and a distribution for the location of the mapped blocks.
The simulator assumes that the operating system does not know that
a mapping has taken place. The simulator uses the original location
of the block to determine which block to access next, but it uses the
actual location of the block to determine seek times. Figure 7 shows
the results of Experiment 5, which uses the C-LOOK algorithm with
different fractions of bad blocks. When the fraction of bad blocks
is one percent, the average seek time does not change much and the
seek turnaround time increases by about 15 percent. For 10 percent
bad blocks, the average seek time increases by about 67 percent and
the seek request turnaround time increases by a factor of 20.

Figure 7: Experiment 5 shows the effect of bad blocks on the
C-LOOK algorithm.

8 Curriculum

The simulator can be used for in-class demonstrations of the tradi-
tional scheduling algorithms. Students can also use it to perform
experiments outside of class. The tutorial that is available on the
web site can be used as a standalone explanation without requiring
any classroom discussion. If class time is tight, students can go
through the tutorial after reading a discussion of disk head schedul-
ing in a standard textbook and then be assigned problems using the
simulator similar to the ones below.

• Compare standard scheduling algorithms such as FCFS,
SSTF, LOOK and C-LOOK for a disk with a simple layout
and fixed linear seek time. Generate requests uniformly
throughout the entire disk.

• How does the pattern of requests affect the performance of a
scheduling algorithm? Choose an algorithm and vary the re-
quest pattern. The simplest pattern is uniformly distributed.
Compare this with a pattern in which requests are of two

types, each type concentrated in a particular area of the disk.
• How are each of the standard scheduling algorithms affected

by disk load? Which algorithms degrade gracefully as the
load is increased? Look at the maximum queue size and av-
erage seek and turnaround times. Does the average seek time
increase or decrease under heavy load?

• Suppose the operating system assumes a fixed number of sec-
tors per track but the disk has a zoned layout. Which of the
standard scheduling algorithms are most affected by the dif-
ference between the logical and physical layout of the disk?

• The seek time consists of two parts, one that is independent
of the distance to seek and one that depends on this distance.
Which algorithms are most affected by each of these parts?

• How do bad blocks affect performance? Is there a critical
percentage of bad blocks beyond which the performance de-
grades rapidly? Does this percentage depend on the seek
movement algorithm?

9 Discussion

The simulator is written in Java and can be run remotely from a
browser or the code can be downloaded and run locally [3]. The
web site allows users to run the five experiments described in this
paper from a browser without installing any software. A step-by-
step tutorial is also available that allows students to learn how to use
the simulator without additional help. A user’s guide gives complete
documentation for those who want to explore disk head scheduling
in more detail.

The disk head simulator has a number of limitations. It is difficult
to simulate real workloads in which most accesses are to files that
may be stored contiguously. The simulator ignores both rotational
latency and transfer time, and it is limited to runs of a few thou-
sand block accesses. However, the simulator does allow students to
easily design experiments to test a variety of disk head scheduling
algorithms and to gain insight into their operation.

10 Acknowledgments
This work has been supported by an NSF grant: A Course in Experi-
mental Techniques for Computer Science Majors: Proof of Concept,
DUE-0088769.

References
[1] Denning, P. J., “Effects of scheduling on file memory opera-

tions,” AFIPS Spring Joint Computer Conference, April 1967,
pp. 9–21.

[2] Nutt, G., Operating Systems, A Modern Perspective, Second
Edition, Addison-Wesley, 2000.

[3] Robbins, S., A disk head scheduling simulator, 2003. Online.
Internet. Available WWW: http://vip.cs.utsa.edu/nsf/disk/

[4] Silberschatz, A., Galvin, P. B. and Gagne, G., Operating Sys-
tem Concepts, Sixth Edition, John Wiley and Sons, Inc, 2002.

[5] Stallings, W., Operating Systems, Second Edition, Prentice
Hall, 1995.

[6] Tanenbaum, A., Modern Operating Systems, Second Edition,
Prentice Hall, 2001.

[7] Thomasian, A. and Chang, L., “Disk scheduling policies with
lookahead,” ACM Sigmetrics Performance Review, vol 30,
2002, pp. 31–40.

