
Using Remote Logging for Teaching Concurrency

Steven Robbins
Department of Computer Science
University of Texas at San Antonio

srobbins@cs.utsa.edu

Abstract

Students often have difficulty visualizing, understanding and de-
bugging concurrent programs. Programming assignments involv-
ing concurrency are also difficult to grade. The output alone is
not sufficient because the print statements from cooperating threads
or processes can interfere with each other and garble the results.
The remote logging tool described here allows multiple processes
or threads to atomically log messages to a local or remote host.
Different views of the messages are available in real time through
a graphical user interface (GUI). The tool consists of two parts, a
library for adding logging commands to a user program and a GUI
for presenting different views of the logged messages. A separate
logging library is needed for each programming language (e.g., C,
C++, Java), but a single GUI works with all of these. A C logging
library and a general GUI are available on the web.

Categories & Subject Descriptors
K.3 [Computers & Education]: Computer & Information Science
Education - Computer Science Education.

General Terms
Concurrent Programs, Debugging Tools.

Keywords
Atomic, Logging, GUI.

1 Introduction

Concurrency can be introduced in many computer science courses
including systems programming, operating systems and computer
networks. Aids for the teaching of concurrency that have been re-
cently reported include communication libraries [3], tools [4], Petri
nets [2], instructional operating systems [1, 5], simulators [7] and
process topology [6].

The tool described here is a remote logging facility that allows a
program to log messages at various points in a concurrent program.
The messages are sent to a GUI-based logging engine that allows

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’03, February 19-23, 2003, Reno, Nevada, USA.
Copyright 2003 ACM 1-58113-648-X/03/0002...$5.00.

the user to display different views of the messages along with in-
formation about the source and the time they were received. The
GUI allows users to create printable log files that can be handed in
to an instructor to aid in grading an assignment. The next section
of the paper gives an overview of the logger design, followed by
sections on the local interface and the logging engine. Sections 5
through 8 give examples of using the logger along with sample out-
put. Section 9 talks about using the implementation of the logger as
a teaching tool, while Section 10 gives conclusions.

2 Design

The logging facility has two parts, a local interface that is compiled
and linked with the program doing the logging, and a logging en-
gine with a graphical user interface (GUI) that receives the logging
information and displays it in a user-modifiable format. The GUI
may be run on a host other than the one running the logged program
and is independent of the programming language of the logged pro-
gram. This separation of local interface and logging engine provides
flexibility when the logged host does not support a GUI or when the
programs to be logged are written in different languages. It also
removes the CPU-intensive GUI processing from the logged host,
minimizing the interference with the program being logged, and it
allows processes on multiple hosts to be logged.

The logging engine GUI allows students to save the output in HTML
format and display it on their web page. Java was chosen for the
language of the remote logger because its graphical library is al-
most universally available and the same code can be run on multi-
ple machines. The code is distributed in jar files and can be run on
any machine with a Java 1.1 or later runtime system. All code is
available over the Internet.

A separate local interface is needed for each language and operating
system type. The local interface to the logger for the C language
under UNIX described here is based on the C I/O library, which
makes learning to use the logging facility fairly simple. The logger
works seamlessly in either a threaded or non-threaded environment.
It can be used with programs written in C or C++. A different local
interface would be needed for other languages such as Java.

3 Local Interface (C Implementation)

The logging facility uses a handle of type LFILE with functions
lopen, lclose and lprintf that are analogous to the C I/O
functions fopen, fclose and fprintf. The prototypes are:

LFILE *lopen(char *host, int port);

int lclose(LFILE *mf);

int lprintf(LFILE *mf, char *fmt, ...);

The lopen takes two parameters, the name of the host that receives
the logging information and the port number used to connect to that
host. If host is NULL or the port is 0, environment variables are
used for these values. The lclose and lprintf have syntax
identical to fclose and fprintf, except that they return 0 on
success and −1 on error. The fmt string in lprintf behaves
exactly like the format string in fprintf, except that it supports
one additional format specification, %t, for including the current
time in the logged string. The design ensures that all logging is
atomic.

The local interface consists of four files. Two files are for UICI [8]
which handles the network communication. A header file contains
a typedef for the LFILE structure and the prototypes for the in-
terface routines given above. The last file contains the code. Each
lopen makes a network connection to the remote log receiver. This
connection stays open until all processes that have inherited it have
closed the connection with lclose or have terminated.

The lprintf creates a string and sends it to the remote logger
along with the process ID of the calling process. In a threaded
environment, lprintf also sends the thread ID. The lprintf

function does not do any buffering at the process and each call to
lprintf sends its string atomically.

4 Remote Logging Engine (Java Implementation)

The remote logging engine is a network server that waits for con-
nections on a given port. The server will accept any number of con-
nections on this port and log information coming from all connec-
tions. Each lopen from the local interface starts a new connection
with a new connection number. When the server starts, it displays a
control window that allows access to the three main views: Output,
Connections and Generators. It also allows the information shown
in any of these views to be put is a log file [9].

The Output Frame in Figure 1 shows all of the output sent to the
remote logger ordered by arrival time. For each string logged, it
gives the message number, the connection number, the generator,
the time the message was received and the message. The generator
is the process ID of the process that executed the lprintf. In
a multithreading environment this is followed by a period and the
thread ID of the calling thread as shown in Figure 2. By default,
times are measured in seconds since the first connection was made.
Three decimal places are shown, giving millisecond precision, the
precision available in the base Java system. Time can also be dis-
played as wall clock time.

The Connections Frame shows information about each connection.
A connection is made from the C interface with the lopen func-
tion. Connections are inherited by forked processes and threads, so
many processes and threads can use the same connection. Each con-
nection is given a connection number by the remote logger starting
with connection 0. For each connection, the Connections Frame
shows the connection number, the time the connection was opened
(from the point of view of the GUI logging engine), the number
of messages sent over that connection, the time the connection was
closed, and the number of seconds that the connection was open.

Clicking on a line in the Connections Frame pops up a Connec-

tion Frame window giving detailed information about a particular
connection. This gives similar information to that displayed in the
Output Frame, but only for the messages from a given connection.

The Generators Frame shows one line of information for each
generator. A generator is determined by the process ID (or process
ID and thread ID in a multithreaded environment). A single pro-
cess can have more than one connection to the logging engine and
so each generator line may correspond to a number of lines in the
Connections Frame. Clicking on a line in the Generators Frame
pops up a Generator Frame showing only those messages having
that generator.

5 Example: Process Chain

In a chain of n processes, each process except the last has another
of the processes as its parent. Process chains are useful in teaching
about inheritance of resources and concurrent operation. The order
in which the processes in a chain execute is nondeterministic, af-
fected by the scheduling algorithm and the other processes on the
system. When I first started using the process chain as an exam-
ple, I would have each process of the chain output a message. The
messages would appear in a different order on subsequent runs. On
faster, modern systems, the output of this type of program is almost
always the same and it may take hundreds of runs before the nonde-
terministic behavior is apparent. For testing, each process can call
waste time to simulate doing a random amount of CPU bound
processing before printing the message. This makes the nondeter-
ministic nature more apparent.

The program below creates a chain of 4 processes and logs a mes-
sage from each process. Each process calls waste time(n),
which wastes a random number of microseconds of CPU time be-
tween 1 and n. Figure 1 shows the Output Frame for this program.
For each run, the messages may appear in a different order.

int main(void) {
int i;
LFILE *mf;

mf = lopen(NULL,0);
lprintf(mf,"Starting process creation at %t");
for (i = 1; i < 4; i++)

if (fork() != 0)
break;

waste_time(100000);
lprintf(mf, "Process %d (ID=%d, parent=%d) at %t",

i, (int)getpid(), (int)getppid());
return 0;

}

Figure 1: Output from a chain of 4 processes.

6 Example: Threads

The following program creates 4 threads that each monitor standard
input. After getting input each thread does a short calculation of
random length to simulate the processing of the input.

static void *do_it(void *mf) {
char buf[80];
int i;

for (i = 0; i < 3; i++) {
scanf("%79s", buf);
lprintf((LFILE *)mf, "Got %s", buf);

}
lprintf((LFILE *)mf, "Thread terminating");
waste_time(100000);
return NULL;

}

int main(void) {
int i;
pthread_t tid[4];
LFILE *mf;

mf = lopen(NULL, 0);
lprintf(mf, "Running 4 threads");
for (i = 0; i < 4; i++)

pthread_create(tid+i, NULL, do_it, mf);
for (i = 0; i < 4; i++)

pthread_join(tid[i], NULL);
lprintf(mf, "Main program exit");
return 0;

}

Figure 2 shows the Output Frame after the line “abc def ghi jkl”
was typed at the keyboard followed by “abc”, “def”, “ghi”, and “jkl”
on separate lines. The Output Frame shows the process ID and the
thread ID in the Gen column. In this run of the program the threads
that receive the input are 4, 4, 5, 5, 6, 6, 7 and 5. The result may be
different on each run.

This simple example illustrates the asynchronous behavior of mul-
tiple threads. It is not possible to predict which thread receives each
input.

Figure 2: Output from a program with 4 threads.

7 Example: Request-Reply Protocol

In a request-reply protocol, one host sends a request to another, and
the second host sends a reply message back to the first host. Con-
sider a time server that sends the current time as a string each time
it receives a byte from a network connection. The time server waits

for a connection request. Each time the server reads a byte it sends
the current time to the remote host in the form of a string. When
the connection is closed, the server waits for another connection re-
quest. Figures 3 and 4 show the result of logging this request-reply
protocol by the client and the server under different circumstances.
In each case the client makes two requests. This example shows
some of the strengths and weaknesses of the logger.

In Figure 3 the server, client, and logging host are the same ma-
chine. The Time column in the Output Frame indicates the time
the message was received. Normally, this is not related to any times
generated by the hosts doing the logging, since the clocks on dif-
ferent hosts are not synchronized. The default is to display the time
the message was received relative to the time of the first connection
to the logger. However, in this case everything is running on the
same machine, so we show the absolute time at which the messages
are received. The messages with connection number 0 or generator
5739 come from the time server. Messages with connection number
1 or generator 5741 come from the client.

The order that the messages from a given host are received is the
order in which they are sent. However, messages from the server
and client are interleaved in a way that does not represent the order
in which they were sent. For example, message 7 was generated by
the server at about 788 milliseconds after 2:33:26 pm and logged 89
ms after it was sent. Message 10 was sent by the client 1 ms before
message 7 was sent by the server, but message 10 was processed by
the logging engine 12 ms after message 7.

In other words, the second reply was logged before the first request,
even though the second reply could not have been generated until
the first request was made, its reply was received and the second
request was made.

Messages 10 and 11 come from the client and are generated by con-
secutive statements in the client. They are logged 5 ms apart. Mes-
sages 13 and 14 are the corresponding messages from the second
request from the client. Notice that although these also were gen-
erated by consecutive statements, they were received 142 ms apart.
Most likely a context switch occurred on the client or the logger.

Because everything is on one machine, the communication between
client and server is very fast. Only 3 ms separates the time between
the two replies by the server as illustrated by the output columns
for messages 6 and 7. This example also shows the latency between
the sending and receiving of messages. The latency of message 6 is
only 1 ms, while the latency of message 7 is 89 ms. In general the
logger will not be able to reveal anything about this latency, except
when the logger is run on the same host as the one being logged and
the message sent contains the time the message was generated.

In Figure 4 the client and the server are on different machines, and
so the logger is set to just show times relative to the first connection.
Messages 8 and 12 show that the difference in time between the
two replies is 73 ms, and messages 7 and 11 show that the time
between the requests is 110 ms. Messages from different hosts can
be received out of order. For example, message 14 from the server
indicating when the reply was sent is received at the logger after
message 11 from the client indicating that the reply was received.
That is, the reply message was logged before the corresponding
request.

For an assignment such as the request-reply protocol, students could
hand in either a screen shot of the Output Frame, or a printout

Figure 3: Output from a request-reply protocol with clients and
server on the same host.

Figure 4: Output from a request-reply protocol with clients and
server on different hosts.

of the log file. Alternatively, the students could put their log files
(which are in HTML format) on their web sites, along with a com-
mentary explaining the output. This gives the instructor valuable
information about the operation of the program without the need
for detailed analysis of the code. It can also be used to pinpoint
errors.

8 Example: Tunnel Monitor

A tunnel is a web utility that passes web traffic to a fixed destination
without any interpretation or modification. A web browser running
on host A makes a request to host B for a resource that actually
resides on host C. A tunnel server running on host B creates a tunnel
process that makes a connection to host C. All information that
comes to the tunnel from host A is sent to host C, and all information
that comes from host C is sent to host A. Host A thinks that it is
communicating only with host B and knows nothing of host C which
may be behind a firewall. This hides and protects host C from the
rest of the network. Tunnels are commonly used to support web
servers behind firewalls.

A simple implementation of a tunnel uses two processes (or
threads), one that reads only from host A and one that reads only
from host C. Each of these executes code in a loop similar to:

bytes read = read(fromfd, buf, BLKSIZE);

write(tofd, buf, bytes read);

This is somewhat oversimpilfied in that the error checking is not
shown and it assumes that the write outputs all of the bytes re-
quested. To monitor the number of bytes read on each iteration of
the loop by each process, open the remote log file before creating
the second process and insert the following line in the loop:

lprintf(mf, "Bytes: %d", bytes read);

In the HTTP protocol, a request consists of an initial request line
followed by additional header lines, an empty line and possibly a
resource. The initial request and the header lines contain only print-
ing characters and line terminators. The resource can be arbitrary
binary information. The response has a similar format. Monitor-
ing the initial requests that come through a tunnel requires reading
and logging the initial request and then transferring bytes in either
direction until the connection is closed. Reading the initial request
typically requires reading a byte at a time until a line feed is found.
Monitoring and logging the header lines requires reading and log-
ging lines until a blank line is found, and then transferring the bi-
nary resource. This parsing of the transmission adds considerable
complication to the tunnel.

The remote logging facility has features that allow monitoring the
full headers without parsing the transmission. When a message is
logged, all non-printing characters are ignored except for the line
feed. A line feed imbedded in a message causes the message to be
logged on separate lines, each with the same message number. The
logging can be accomplished by inserting the following line into the
tunnel loop for each process:

lprintf(mf, "%.*s", bytes read, buf);

The use of the variable precision format specification limits the
number of bytes output to bytes read. This is necessary be-
cause the header lines are not strings. All header lines will be cor-
rectly logged. If the resource contains only printing characters, it
will be logged also. Otherwise, some, all, or none of the resource
will be logged. Figures 5 and 6 show the Generator Frames for
the two processes of a tunnel handling two consecutive requests for
the same short resource. In Figure 5 a simple GET request is made
by the browser. The request contains several header lines, all of
which were logged by a single lprintf having message number
3. Figure 6 show the reply, a simple one line resource.

9 The Implementation as a Teaching Tool

The implementation of the C logging library gives examples of tech-
niques that could be discussed in class. Some of these include the
use of conditional compilation to handle threaded and nonthreaded
applications, the careful use of allocated memory to avoid memory
leaks and the use of functions with a variable number of parameters.

Most interesting is the method used to guarantee that the messages
are logged atomically. It is not sufficient to send a message to the
remote logger with a single call to write. When writing to a net-
work, it is not unusual for a write to return with fewer bytes writ-
ten than requested. Even if it does always write the entire amount
requested, there is no guarantee that writes to the same connection
from multiple processes will not be interleaved.

Figure 5: The output for a tunnel request.

Figure 6: The output for a tunnel response.

The interaction is handled by sending all output to a pipe. Pipes
have the property that any write of size less than PIPE BUF is
guaranteed to be atomic. The writes will not be interleaved. The
lopen function creates a pipe and all writes are done to this pipe.
It also creates a child process that reads from the pipe and sends the
result to the network. Since there is only one processes writing to
the network for each connection, the correct sequence of bytes is
maintained.

10 Conclusions

The logging facility described here consists of two parts, a local
logging library that is linked to the user program being logged and
a GUI program that displays the logged information. The logging
facility can aid students in understanding the behavior of concur-
rent programs. A few minutes of explanation is sufficient to allow
students to use the facility since the interface is similar to the stan-
dard C I/O interface. It can be used in an environment with multiple
processes or threads on multiple machines, and the complexity of
the analysis and display by the remote GUI does not perturb the
programs that are being logged.

The user can dynamically customize the views of the logged data
to show the aspects that are most relevant. The logs can be saved in
HTML format and printed from a standard browser. By examining
the printed logs, a student or instructor can gain insight into the
details of the running of concurrent programs that would otherwise
be hidden. The student can use this information to debug programs
and this same information can aid the instructor in grading. The
implementation of the local logging facility can be used as a case
study to illustrate how writes from multiple sources can be made
atomic.

Source code for the C local logging library, a jar file for the Java
GUI and a users guide are available on the web [10].

11 Acknowledgments
This work has been supported by an NSF grant: A Course in Experi-
mental Techniques for Computer Science Majors: Proof of Concept,
DUE-0088769. It was also supported by a UTSA Faculty Research
Award.

References
[1] Atkin, B. and Sirer, E. G., “PortOS: an educational operat-

ing system for the Post-PC environment,” Proc. 33rd SIGCSE
Technical Symposium on Computer Science Education, 2002,
pp. 116-120.

[2] Barros, J. P., “Advance CS courses: Specific proposals for
the use of petri nets in a concurrent programming course,”
Proc. 7th Annual Conference on Innovation and Technology
in Computer Science Education, 2002, pp. 165-167.

[3] Carr, S., Feng, T. J., Mayo, J. and Ching-Kuang, S., “A
communication library to support concurrent programming
courses,” Proc. 33rd SIGCSE Technical Symposium on Com-
puter Science Education, 2002, pp. 360–364.

[4] Exton, C., “Elucidate: A tool to aid comprehension of
concurrent object oriented execution,” Proc. 5th Annual
SIGCSE/SIGQUE conference on Innovation and Technology
in Computer Science Education, 2000, pp. 33–36.

[5] Holland, D. A., Lim, A. T. and Seltzer, M. I., “A new instruc-
tional operating system,” Proc. 33rd SIGCSE Technical Sym-
posium on Computer Science Education, 2002, pp. 111-115.

[6] McDonald, C. and Kazemi, K., “Teaching parallel algorithm
with process topologies,” Proc. 32rd SIGCSE Technical Sym-
posium on Computer Science Education, 2001, pp. 70-74.

[7] Robbins, S., “Exploration of process interaction in operating
systems: a pipe-fork simulator,” Proc. 33rd SIGCSE Techni-
cal Symposium on Computer Science Education, 2002, pp.
351-355.

[8] Robbins, K. and Robbins, S., Practical UNIX Programming,
A Guide to Concurrency, Communication, and Multithread-
ing, Prentice Hall, 1996.

[9] Robbins, S., “Remote logging in Java using Jeli: A facility
to enhance development of accessible educational software,”
Proc. 31st SIGCSE Technical Symposium on Computer Sci-
ence Education, 2000, pp. 114-118.

[10] Robbins, S., Logging Facility, 2002. Online. Internet. Avail-
able WWW: http://vip.cs.utsa.edu/nsf/logging/

