
Adding Sound to the
XTANGO Animator

Steven Robbins

September, 1995

Technical Report CS-95-13

Abstract. This is the third in a series of technical reports
dealing with the use of sound by programs. In this report a
modification to the XTANGO Animator to allow sound gen-
eration by the Animator is described.

Division of Computer Science
The University of Texas at San Antonio
San Antonio, TX 78249



1 Introduction

The XTANGO animation package [2] is a powerful tool for showing the dynamic behav-
ior of a program. A simplified interface to XTANGO is provided by the animator. This
program simply reads ASCII text from standard input and interprets each input line as an
animation command. Simple commands allow the creation of objects such as rectangles, tri-
angles, circles, or text while other commands move these objects along a straight line path.

I have developed a method of augmenting this animation package to use sound generated
by a MIDI device. At this point the supported features include the generation of a tone with
a given timber (instrument), pitch, and volume while a text object is moving. An option
exists for the generation of another sound when the move is completed. Additionally, the
pitch can be modified as the object is moved.

Most of the changes to the package are make to the animator program itself as this is the
program that interprets the commands. The animator calls XTANGO functions to perform
the animation. The only modification to the XTANGO source is in the file xtangodraw�c
and the modification involves only 2 lines. A global variable is declared and initialized at
the top of this file:

void ��sound�fun��void� � NULL�

This is a pointer to a function which is initialized to NULL. A second line is added to the
function TANGO Text which is the last function in the xtangodraw�cfile. Before this two-
line function returns the following is inserted:

if �sound�fun �� NULL� sound�fun���

Since sound fun is initialized to NULL, this has no effect unless sound fun has been mod-
ified and so the modified XTANGO package can be used in applications that do not support
sound. This means that only one XTANGO package needs to be supported on a system, and
the sound features are available without adding significant overhead when sound is not used.

TANGO Text is called each time a text object is drawn. Moving an object in TANGO is
accomplished by a sequence of operations in which the object is erased and then redrawn at
a slightly different position along the path of motion. If the sound fun pointer is not NULL,
the function it points to is called each time the text is moved along its path.

The animator is linked with the XTANGO library, and so it can set the sound fun pointer
as desired. Commands have been added to the animator to initialize the sound device and
to produce sounds as text is moved.

The animator sound interface is easy to use. To produce a sound of constant pitch during
a move, just send the animator the command:

nextnote n m p �

1



where n, m, and p are integers representing the pitch, volume, and channel (instrument). The
last parameter can be used to change the pitch during the motion of the text. This sound will
be used when the next animator moveto command is executed.

If the command

endnote n m p �

is also sent before the move, then the corresponding sound is produced when the move is
complete.

2 The User Interface

This section gives a complete reference manual for the commands which have been added
to the animator at the time this report was written.

usesound sounddev

This command initializes the sound device. Use 	dev	ttyS� for the first serial port (COM1)
under Linux Slackware 2.2 or 	dev	term	a for the first serial port under Solaris 2. An error
message is sent to standard error if an error occurs.

initchan channel instrument

This command associates the given channel with the given instrument. Channel numbers
are between 0 and 15, and instrument numbers are between 0 and 127. See [1] for a list of
the instruments that can be used for a general MIDI device such as the Korg X5DR. This
device associates channel 9 with the General MIDI drum kit when it is turned on.

nextnote pitch velocity channel increment

This command causes the animator to play the note with the given pitch and velocity (vol-
ume) on the given channel the next time text is moved. The pitch and volume are each be-
tween 0 and 127. A volume of 0 represents silence. See [1] for the relationship between the
pitch number and the note that is played. The increment is an integer which may be posi-
tive, negative, or zero. Each time text is moved a small amount the increment is added to
the pitch, and the note is played. This allows the pitch to vary as the text is moved along a
line.

endnote pitch velocity channel duration

This command sets a note which will start when the next text moveto completes. The du-
ration must be included in this command but is is not currently used. Instead, the note is
turned off by the next endnote command when a moveto completes.

2



3 Implementation Details

The animator keeps track of three note objects each of type notetype

typedef struct 


int flag�

int pitch�

int velocity�

int channel�

int duration�

int pitchinc�

� notetype�

These are called nnote, enote, and eoffnote. The nnote contains the next note to play.
The nextnote animator command sets the pitch, velocity, channel, and pitchinc

members of this variable from its parameters and also sets the flag to true. The nextnote
command also sets the sound fun pointer to point to the increment note function if the
pitchinc parameter was not zero. When a text move from an animator moveto command
occurs, moveto starts the note if nnote�flag is set. If the nnote�flag is set when the
moveto completes, the note is turned off.

If the pitchinc was not zero, the increment note function is called each time a
small text move takes place. This turns off the previous note stored in nnote, increments
nnote�pitchby nnote�pitchinc and then starts the new note. This allows for the change
in pitch as the text is moved.

The endnotecommand is used to produce a note when the moveto completes. It sets the
pitch, channel, and duration members of enote from its parameters as well as setting
its enote�flag to true. Before the moveto returns, it starts this note if enote�flag is set.
The eoffnote variable is used to eventually turn off this ending note. The eoffnote is set
to the old enote value when a new enote is set by the endnote animator command. If this
variable has its flag set when a moveto completes, the note is stopped. An endnotewith a
velocity of 0 can be used to turn off the previous endnote without initiating a new one.

4 Code Segments

The following represents most of the code that was added to the animator.

notetype nnote � ��������������

notetype enote � ��������������

notetype eoffnote � ��������������

3



int sfd � ���

void send�two�bytes	int b�� int b
�

�

unsigned char playmsg�
�

playmsg��� 	unsigned char� b��

playmsg��� 	unsigned char� b
�

write	sfd�playmsg�
��

�

void send�three�bytes	int b�� int b
� int b��

�

unsigned char playmsg���

playmsg��� 	unsigned char� b��

playmsg��� 	unsigned char� b
�

playmsg�
� 	unsigned char� b��

write	sfd�playmsg����

�

void all�notes�off	�

�

send�two�bytes	�xbc��x�a��

�

void start�note	int pitch� int velocity� int channel�

�

send�three�bytes	�x���channel�pitch�velocity��

�

void end�note	int pitch� int velocity� int channel�

�

send�three�bytes	�x���channel�pitch�velocity��

�

void increment�note	void�

�

if 	nnote�pitchinc �� �� �

end�note	nnote�pitch�nnote�velocity�nnote�channel��

nnote�pitch � nnote�pitch�nnote�pitchinc�

start�note	nnote�pitch�nnote�velocity�nnote�channel��

�

�

4



void

usesound	str�

char �str�

�

char cmd�SLEN�

char sound�dev�SLEN�

struct termios mytermio�

int retval�

speed�t speed�

sscanf	str� ��s �s��cmd�sound�dev��

fprintf	stderr��opening sound device �s�n��sound�dev��

sfd � open	sound�dev�O�RDWR��

if 	sfd � �� �

fprintf	stderr��Error opening sound device� �s�n��sound�dev��

return�

�

retval � tcgetattr	sfd��mytermio��

if 	retval � �� �

fprintf	stderr��Error getting termio structure for fd��d�n��sfd��

return�

�

speed � cfgetospeed	�mytermio��

fprintf	stderr��Old speed paramter is �d�n��	int�speed��

retval � cfsetospeed	�mytermio�B�������

if 	retval � �� �

fprintf	stderr��Error setting baud rate in termio structure�n���

return�

�

retval � tcsetattr	sfd�TCSANOW��mytermio��

if 	retval � �� �

fprintf	stderr�

�Error setting new termio structure of sound output�n���

return�

�

retval � tcgetattr	sfd��mytermio��

if 	retval � �� �

fprintf	stderr�

�Error getting termio structure for fd��d second time�n��sfd��

return�

�

5



speed � cfgetospeed	�mytermio��

fprintf	stderr�

�New speed paramter is �d� B�������d�n��	int�speed�	int�B�������

�

void

initchan	str�

char �str�

�

char cmd�SLEN�

int chan�instr�

sscanf	str� ��s �d �d��cmd��chan��instr��

send�three�bytes	�xc��chan���instr��

�

void

nextnote	str�

char �str�

�

char cmd�SLEN�

int pitch�vel�chan�inc�

sscanf	str� ��s �d �d �d �d��cmd��pitch��vel��chan��inc��

nnote�pitch � pitch�

nnote�velocity � vel�

nnote�channel � chan�

nnote�pitchinc � inc�

if 	vel � �� nnote�flag � ��

else nnote�flag � ��

if 	inc �� �� sound�fun � NULL�

else sound�fun � �increment�note�

�

void

endnote	str�

char �str�

�

char cmd�SLEN�

int pitch�vel�chan�dur�

6



sscanf	str� ��s �d �d �d �d��cmd��pitch��vel��chan��dur��

if 	enote�flag� eoffnote � enote�

enote�pitch � pitch�

enote�velocity � vel�

enote�channel � chan�

enote�duration � dur�

enote�pitchinc � ��

if 	vel � �� enote�flag � ��

else enote�flag � ��

�

5 A Library for XTANGO Sound

It is more convenient for programs to call functions than to send output to standard output.
We provide a procedural interface to parts of the animator.

The following functions should require little explanation for those who have used the
animator.

void initialize�sound�char �dev�




�void�printf��usesound s�n��dev��

�void�fflush�stdout��

�

void set�sound�channel�int chan� int instr�




�void�printf��initchan d d�n��chan�instr��

�void�fflush�stdout��

�

void set�move�note�int pitch� int volume� int channel� int incr�




�void�printf��nextnote d d d d�n��pitch�volume�channel�incr��

�void�fflush�stdout��

�

7



void clear�move�note��




�void�printf��nextnote d d d d�n�����������

�void�fflush�stdout��

�

void set�end�note�int pitch� int volume� int channel�




�void�printf��endnote d d d ��n��pitch�volume�channel��

�void�fflush�stdout��

�

void stop�end�note�int pitch� int volume� int channel�




�void�printf��endnote d d d ��n��pitch�volume�channel��

�void�fflush�stdout��

�

void moveto�id�int id�� int id��




�void�printf��moveto d d�n��id��id���

�void�fflush�stdout��

�

void make�text�flex�int id� double x� double y� char �color�

char �font� char �str�




�void�printf��flextext d ���f ���f � s s s�n��

id�x�y�color�font�str��

fflush�stdout��

�

void make�circle�int id� double centerx� double centery�

double radius� char �color� char �fill�




�void�printf��circle d ���f ���f ���f s s�n��

id�centerx�centery�radius�color�fill��

�

8



6 An example

The following example uses the Solaris 2 first serial port 	dev	term	a and sets channel
1 to be the vibes. It creates a text object containing the word MOVING with ID 1000 and
two circles with IDs 1001 and 1002. It moves the text to the center of the first circle with
increasing notes and then to the center of the second circle with decreasing notes. When
done, it produces a clash of symbols.

�define ID� ����

�define ID� ����

�define ID� ����

�define ID� ����

	� Initialize the serial port �	

initialize�sound��	dev	term	a���

	� Set channel � to instrument �� �vibes� �	

set�sound�channel�������

	� Create three objects �	

make�text�flex�ID�����������black����x�����MOVING���

make�circle�ID���������������red���outline���

make�circle�ID����������������blue���outline���

	� Set note to �� � C�� volume � ���� channel �� increment � �	

set�move�note�������������

moveto�id�ID��ID���

	� Set note to �� � ��� volume � ���� channel �� increment �� �	

set�move�note��������������

	� Channel � is the drum kit and note � is a cymbal clash �	

set�end�note����������

moveto�id�ID��ID���

clear�move�note���

make�text�flex�ID�������������purple����x����The End���

7 The Table

The table given on the next page lists the correspondence between numeric values and the
things they can represent. For each number in the range 0 to 127, 5 values are given. The

9



first is the instrument that is represented by the number when the number is used in a channel
initialization command. Next is my perception of how the volume of the note behaves while
the note is on. This is called the envelope of the note and is in the column labeled L. I have
used three classifications. F means that the note dies out fast. S means that the note dies out
slowly. C means that the volume is constant as long as the note is on so that it does not die
out until it is stopped. The third entry is the Drum Kit sound that the number corresponds
to if it is used as the pitch for a note on channel 9. Only notes 28-87 represent valid Drum
Kit sounds. Next is my perception of the envelope of that Drum Kit sound. Last is the note
that the number represents when used as the pitch of a start note or stop note command.

I have picked out a few of the instruments and Drum Kit sounds as being an interest-
ing subset to examine when determining what to use for an auralization. These are listed
in boldface. The serious user will want to listen to all of the MIDI instruments and drum
sounds.

References

[1] S. Robbins, “Controlling the Korg X5DR Synthesizer from a UNIX Program,” UTSA
Division of Computer Science Technical Report, CS-95-12.

[2] J. T. Stasko, “Animating algorithms with XTANGO,” SIGACT News, vol. 23, number
2, pp 67-71, 1992

10



Num Instrument L Drum L Note Num Instrument L Drum L Note

0 G01 Piano M C -2 64 G65 Soprano Sax C Open Conga F E 3
1 G02 Brite Piano M C# -2 65 G66 Alto Sax C Hi Timbal F F 3
2 G03 Hammer Piano M D -2 66 G67 Tenor Sax C Lo Timbal F F# 3
3 G04 Honky Tonk M D# -2 67 G68 Baritone Sax C Agogo F G 3
4 G05 New Timesh M E -2 68 G69 Sweet Oboe C Agogo F G# 3
5 G06 Digi Piano M F -2 69 G70 English Horn C Cabasa F A 3
6 G07 Harpssichord M F# -2 70 G71 Bassoon Oboe C Maracas F A# 3
7 G08 Clavichord M G -2 71 G72 Clarinet C Whistle S F B 3

8 G09 Celesta M G# -2 72 G73 Piccolo C Whistle L M C 4
9 G10 Glocken M A -2 73 G74 Flute C Guiro S F C# 4

10 G11 Music Box M A# -2 74 G75 Recorder C Guiro L M D 4
11 G12 Vibes M B -2 75 G76 Pan Flute C Claves F D# 4
12 G13 Marimba M C -1 76 G77 Bottle C WoodBlock2 F E 4
13 G14 Xylophone M C# -1 77 G78 Shakuhachi C WoodBlock3 F F 4
14 G15 Tubular M D -1 78 G79 Whistle C Mute Cuica F F# 4
15 G16 Santur M D# -1 79 G80 Ocarina C Open Cuica F G 4

16 G17 Full Organ C E -1 80 G81 Square Wave C MuteTriang F G# 4
17 G18 Perc Organ C F -1 81 G82 Saw Wave C OpenTriang F A 4
18 G19 BX - 3 Organ C F# -1 82 G83 Syn Caliope C Cabasa F A# 4
19 G20 Church Pipe C G -1 83 G84 Syn Chiff C JingleBell M B 4
20 G21 Positive C G# -1 84 G85 Charang M Bell Tree F C 5
21 G22 Musette C A -1 85 G86 Air Chorus C Castanet F C# 5
22 G23 Harmonica C A# -1 86 G87 Rezzo 4ths C Side Kick F D 5
23 G24 Tango C B -1 87 G88 Bass & Lead C Taiko Lo F D# 5

24 G25 Classic Guitar M C -0 88 G89 Fantaasio C E 5
25 G26 Acoustic Guitar M C# -0 89 G90 Warm Pad C F 5
26 G27 Jazz Guitar M D -0 90 G91 Poly Pad C F# 5
27 G28 Clean Guitar M D# -0 91 G92 Hhost Pad C G 5
28 G29 Mute Guitar M Rock Kick F E -0 92 G93 Bowed Glass C G# 5
29 G30 Over Drive M Snare 3 F F -0 93 G94 Metal Pad C A 5
30 G31 Dist Guitar M Open HH F F# -0 94 G95 Halo Pad C A# 5
31 G32 Rock Monics C Fat Kick F G -0 95 G96 Sweep C B 5

32 G33 Jass Bass M Timbales F G# 0 96 G97 Ice Rain M C 6
33 G34 Deep Bass M Snare 1 F A 0 97 G98 Sound Track C C# 6
34 G35 Pick Bass M RollSnare1 M A# 0 98 G99 Crystal M D 6
35 G36 Fretless M Real Kick F B 0 99 G100 Atmosphere C D# 6
36 G37 Slap Bass 1 M ProcesKick F C 1 100 G101 Brightness C E 6
37 G38 Slap Bass 2 M Side Kick F C# 1 101 G102 Goblin C F 6
38 G39 Synth Bass 1 M Rock Snare F D 1 102 G103 Echo Drop C F# 6
39 G40 Synth Bass 2 C Hand Claps F D# 1 103 G104 Star Theme C G 6

40 G41 Violin C LightSnare F E 1 104 G105 Sitar M G# 6
41 G42 Viola C Tom Lo F F 1 105 G106 Banjo M A 6
42 G43 Cello C Tite HH F F# 1 106 G107 Shamisen M A# 6
43 G44 Contra Bass C Tom Lo F G 1 107 G108 Koto M B 6
44 G45 Tremolo Strings C Pedal HH F G# 1 108 G109 Kalimba M C 7
45 G46 Pizzicato F Tom Lo F A 1 109 G110 Scotland C C# 7
46 G47 Harp M Open HH F A# 1 110 G111 Fiddle C D 7
47 G48 Timpani C Tom Hi F B 1 111 G112 Shanai C D# 7

48 G49 Marcato C Tom Hi F C 2 112 G113 Metal Bell M E 7
49 G50 Slow String C Crash Cym M C# 2 113 G114 Agogo M F 7
50 G51 Annalog Pad C Tom Hi F D 2 114 G115 Steel Drums M F# 7
51 G52 String Pad C Ride Edge F D# 2 115 G116 Wood Block M G 7
52 G53 Choir C China Cym M E 2 116 G117 Taiko M G# 7
53 G54 Doo Voice C Ride Cup F F 2 117 G118 Tom M A 7
54 G55 Voices C Tambourine F F# 2 118 G119 Synth Tom M A# 7
55 G56 Orch Hot F Splash Cym M G 2 119 G120 Rev Cymbol M B 7

56 G57 Trumpet C Cowbell F G# 2 120 G121 Fret Noise M C 8
57 G58 Trombone C Crash Cym F A 2 121 G122 Noise Cliff M C# 8
58 G59 Tuba C Vibraslap M A# 2 122 G123 Seashore M D 8
59 G60 Muted Trumpet C Ride Cym 1 M B 2 123 G124 Birds C D# 8
60 G61 French Horn C Hi Bongo F C 3 124 G125 Telephone C E 8
61 G62 Brass C Lo Bongo F C# 3 125 G126 Helicopter C F 8
62 G63 Syn Brass 1 C Mute Conga F D 3 126 G127 Stadium C F# 8
63 G64 Syn Brass 2 C Open Conga F D# 3 127 G128 Gun Shot M G 8

11


