
A Microprogramming
Animation

Steven Robbins

January, 1995

Abstract. This paper describes a successful project using
computer animation to teach the concepts of microprogram-
ming to lower division computer science majors. The stu-
dents write a simulator for the Mic-1 horizontal microcon-
troller described in the book Structured Computer Organiza-
tion by Andrew Tanenbaum. The simulation is enhanced by
the use of a graphical representation of the machine which
animates the simulation. This creative use of computer ani-
mation enables the students to see the results of their simula-
tion without having to write an extensive user interface. They
can concentrate on implementing the instruction cycle which
directly enhances their understanding of the Mic-1. The
XTANGO animation package is used, making this portable
to any Unix system with an X display. The user interface is
available via anonymous ftp.

Technical Report CS-95-9

Division of Computer Science
The University of Texas at San Antonio
San Antonio, TX 78249



1 Introduction

The University of Texas at San Antonio Computer Science Program offers a sophomore-
level course called Computer Organization II which is required of all undergraduate com-
puter science majors. We use the text Structured Computer Organization by Tanenbaum [8].
The background of the students taking this course includes an introductory course in which
they learn to program in C, a data structures course, also in C, and a circuit design course.
The course covers CPU organization, the instruction cycle, memory, microprogramming,
instruction formats and types, addressing, assembly language and RISC machines. We use
the Intel 80x86, the Motorola 680x0 and the SPARC microprocessors as case studies. The
course includes a segment on assembly language programming using the SPARC assembly
language [5].

The most difficult material in the course is the microprogramming covered in the Tanen-
baum book in chapter 4. Students who understand microprogram control develop a fun-
damental understanding of how a CPU executes a program. This understanding is impor-
tant for later courses in operating systems and architecture. Unfortunately few students are
able to master the material from lecture presentations alone. They are confused by the pres-
ence of two instruction cycles (microprogram and conventional machine level) and have
difficulty understanding the timing of the microprogram instructions themselves. Students
clearly need hands-on experience with this material. Exercises in the Tanenbaum book in-
clude translation of assembly language into microcode and addition of new assembly lan-
guage instructions to the machine. Assignments of this type do not give students a sense of
the execution timing.

The traditional approach to overcoming these pedagogical difficulties is for the instruc-
tor to provide hardware or a simulator for student experimentation [1, 2, 3, 4, 6]. The student
then views the state of the machine during execution. Fuchs et al. [3] describe a micropro-
gramming simulator which they have successfully used to enhance learning in an introduc-
tory computer engineering course. They introduce an instructional microprocessor simu-
lation which has a graphical user interface. The students can write assembly language or
microcode for this target machine and the tool simulates its execution. Their approach is a
definite improvement over pencil and paper simulation and is particularly useful if the goal
is to teach students how to write efficient assembly language or microcode.

The goal of a sophomore level computer science course in computer organization is for
the students to develop a fundamental understanding of how computers work. In particu-
lar, the goal is to achieve an understanding of the instruction cycles of a microcoded Von
Neumann machine. At this level, a simulator like the one in [3] does some of the think-
ing for the students. We have used an alternative approach in which the students write their
own simulation. Because the instruction cycle is the key concept in this material, I provide

1



an animation environment using a standard freely-available animation package which al-
lows students to do a full-instruction cycle implementation in a few hundred lines of code.
The simulator is organized so that it can be implemented in stages with well-defined mile-
stones. The animated output allows students to see the execution of the machine as they
develop code. The project is so clearly-defined that most students are able to complete the
simulation. Student comments were extremely positive about the experience. The unique
advantages of the approach described here are:

� The students write the part of the simulator which requires fundamental understanding
of the process they are trying to understand.

� The students do not have to worry about the details of displaying the information on
the screen.

� The machine to be simulated is described in a standard textbook.

� The simulator is animated and shows the movement of data in the machine.

� Since the students write their own simulator, they can use their creativity to produce
something which is uniquely their own and in which they can take pride.

� The animations produced by the students look professional and the students enjoy
working on them.

� The hard part of the simulation is provided by the instructor and is readily available
for use by others via anonymous ftp. Other instructors who use the Tanenbaum book
can easily incorporate this into their courses.

The organization of the paper is as follows. In Section 2 an overview of the simula-
tor is given. The animation interface is described in Section 3, and class assignments are
described in Section 4. A discussion of the results is in Section 5. Some examples of Mic-
1 and Mac-1 execution are provided in the appendix for readers who are unfamiliar with
Tanenbaum’s text.

2 Overview of the Simulator

A CPU may have its control function implemented entirely in hardware. Alternatively, the
machine instructions may be interpreted by a simpler machine which directly controls the
timing and flow of data within the CPU. The program which runs on this simpler machine
is called a microprogram or the control store of the CPU. Insertion of a different control
store results in a machine with different machine (assembly language) instructions. The

2



execution of the microprogram consists of loading instructions from the control store into
the microinstruction register (MIR). This register directly controls the flow of information
in the machine.

Tanenbaum describes a simple horizontal microcode machine called the Mic-1 shown
in Figure 1. The machine executes a microprogram which is stored in the control store. The
subprograms in the control store correspond to individual instructions at the conventional
machine level (the assembly language of the machine). Tanenbaum implements a complete
assembly language called Mac-1 in the Mic-1 control store. More detailed descriptions of
the Mic-1 and Mac-1 with examples are given in the appendix.

Figure 1: The Mic-1 machine as it appears in the Tanenbaum text. (Permission from Pren-
tice Hall for publication is pending.)

The material on microprogramming is quite complicated and requires an understanding
of the conventional instruction cycle of a Von Neumann machine. Students find this diffi-
cult, in part because there are two instruction cycles to keep track of, one at the microcode
level and one at the assembly language level. We have taught this material for several years,
never feeling satisfied with the students’ grasp of this material. Although they seem to un-
derstand the lecture presentations and could do the assigned problems, fundamental under-
standing is often lacking. We had considered implementing a Mic-1 simulator for the stu-
dents to use, but there just was not enough real estate on the screen of an ASCII terminal to
make this feasible.

Several years went by in which I was involved in other teaching projects, and so I did
not teach this course for a while. In fall 1994 I was assigned to teach the course again. In
the meantime the course had moved from using ASCII terminals connected to a VAX to
Sun workstations. The availability of megapixel displays solved the real estate problem.
Two options were available — write a simulator for student experimentation or have the
students write the simulator as a class assignment. The problem with the latter approach is
that most of the code for such a simulator involves boring routines to display the state of
the simulated machine. While this might be good for teaching programming techniques, it
is not directly related to the course. Also, it would be nice to let the students take advantage
of the graphics capabilities of the workstations, but the programming required normally far
exceeds the capabilities of the students at this level. These difficulties were overcome by
using the XTANGO [7] computer animation system as the display vehicle for the simula-
tions.

3



The idea of a Mic-1 simulator is quite simple since the machine itself is simple. The
basic simulator is a program which takes two command line arguments, a control store and
a memory file. The first file is a representation of the 79-word control store used in the Mic-
1 machine. The second file represents the memory of the Mac-1 machine and contains the
assembled Mac-1 assembly language program to execute along with its data. The simulator
initializes certain data structures and then goes into a loop:

while��� �
subcycle�����
subcycle�����
subcycle�����
subcycle�����

	

Each of the subcycle routines performs the operations corresponding to that subcycle. For
example, the routine subcycle ��� might just consist of:

MIR 
 decode�MIR�control�store�MPC���

where control store is an array of 32-bit quantities and MIR is a structure of the type:

typedef struct �
int addr�
int Areg�
int Breg�
int Creg�
int ENC�
int WR�
int RD�
int MAR�
int MBR�
int SH�
int ALU�
int COND�
int AMUX�

	 MIR�decoded�

The decode MIR routine just shifts and masks its argument to produce the required fields.
Of course to make this simulator useful, there must be some interaction with the user.

The user should be able to single step through the execution of the Mic-1 at the three lev-
els of Mic-1 subcycle, Mic-1 cycle, and Mac-1 instruction cycle. Most of the code for the
simulator involves displaying what is going on in a useful way.

4



3 Animation Interface

The XTANGO animation package is a powerful tool for showing the dynamic behavior of
a program. A simplified interface to XTANGO is provided by the animator which was
written by John Stasko of Georgia Tech [7] specifically for use by undergraduates doing
computer animation. This program simply reads ASCII text, one command per line. Since
the animator ’s input comes from standard input, a C program can send commands to it
with simple printf statements. The simulator might be run by the following command:

mic� controlstore assemblyprog � animator

The simulator executable is called mic�. The file controlstorecontains the control store
and the contents of the main memory are held in the file assemblyprog. The standard
output of the simulator is redirected to standard input of the animator through the pipeline
�.

The animatorallows for drawing text, lines, rectangles, triangles, and circles in various
colors. For example, the following animator command would create a rectangle on the
screen:

rectangle ���� �� �� �� �� blue outline

Positions and distances in the default animatordisplay are referenced with rectangular co-
ordinates in the range from 0.0 to 1.0. The above command creates a rectangle whose lower
left corner has coordinates (0.3, 0.2) and whose width and height are 0.4 and 0.5 respec-
tively. The outline of the rectangle is displayed in blue. The rectangle can be referenced
by its ID, 1234. The animator provides commands to move objects smoothly from one
location to another making animation relatively painless. For example, the animator com-
mand:

moveto ���� �� ��

moves the rectangle with ID 1234 so that its lower left corner now has with coordinates (0.4,
0.7).

The animator interface has been successfully used in our upper division Analysis of
Algorithms course, but it is too complicated for the lower division Computer Organization
students given the complexity of the display to be produced. We solved this problem by
writing an initialize animator routine which draws and labels all of the boxes and lines
in the diagram. The sample animator display from the first version of the Mic-1 simulator
shown in Figure 2 corresponds to the drawing from the Tanenbaum book shown in Figure 1.
Color is automatically used on a color display. Approximately 40 additional routines are
provided to fill values in the various boxes and to move values from one place to another.

5



These library routines hide the details of the animation from the students. A sample of some
of these library routines is shown in Table 1. Their functions should be evident from their
names with a small amount of explanation. For example, the routine:

ani�move�value�from�reg�to�alatch�value�reg��

takes the given value, highlights it in the given register, smoothly moves it to and then along
the A bus to the A latch, and changes the value displayed in the A latch.

Figure 2: The animator display for the first version of the simulator.

The students are shown a very simple Mic-1 simulator for demonstration purposes so
that they can see what is expected of them. The sample simulation allows for single stepping
through the Mic-1 subcycles, dynamically showing the execution of the Mic-1 machine. For

6



void ani�set�mir�A�value�int val��

void ani�set�mir�amux�value�char ch��

void ani�set�register�value�int value� int reg��

void ani�move�value�from�reg�to�alatch�int value� int reg��

void ani�move�value�from�blatch�to�mar�int value��

void ani�move�value�from�mbr�to�memory�int value� int address��

Table 1: Some of the routines used to modify the animator display.

example, on the second Mic-1 subcycle, data in one of the registers is highlighted, moved
from the register to the A bus and down the A bus into the A latch. Data in another regis-
ter is highlighted and moved to the B bus and down into the B latch. The entire program
(excluding the animator library) can be implemented in about 300 lines of code.

Figure 2 shows the animator output. The snapshot of the display was taken in the middle
of executing the second subcycle of the first Mic-1 instruction which executes the Mac-1
POP instruction. The details of this execution are described in the appendix. The simulator
displays the decoded MIR by calling a routine from the animation library package for each
field of the MIR. For example:

ani�set�mir�A�value����

displays �� in the A field of the MIR, since the animator library knows that register 6 of
the Mic-1 contains the constant ��. The instruction POP is shown in the decoded IR box
of the display with the command:

ani�set�decoded�ir�registers�IR���

The animator library knows about the Mac-1 assembly language and can disassemble its
instructions. The display in the decoded MIR box can be set with:

ani�set�decoded�mir�control�store�MPC���

In subcycle 2, the routines:

ani�move�value�from�reg�to�alatch�registers�MIRAreg��MIRAreg��
ani�move�value�from�reg�to�blatch�registers�MIRBreg��MIRBreg��

are used. The first of these highlights the value in register 6, which is ���� and shows it
moving to the A bus, down the A bus, and into the A latch. The A latch is then filled with
that value. The snapshot of Figure 2 was captured just as this value was to enter the A latch.

7



4 Class Assignments

For the first assignment, the class is divided into small groups and each group is responsible
for hand-assembling ten instructions in the control store. By requiring that all don’t-care bits
be zero, there is only one correct answer for each word of microcode. The students hand in
their results by email and these answers are collected into a single file to form the control
store input for the simulator.

The simulator assignment consists of writing a basic simulator which allows for single
stepping at each of three levels: Mic-1 subcycle, Mic-1 cycle, and Mac-1 instruction cycle.
The simulator program essentially consists of a loop which, aside from handling standard
input, calls the four procedures to handle the Mic-1 subcycles. For example, subcycle one
consists of taking the element from the control store array indexed by the MPC and decoding
it. The decoding involves shifting and masking so that each bit field of the MIR can be stored
in the appropriate field of an MIR structure. The simulator shows each field on the display
by calling a routine such as ani set mir A value�value�reg�.

The basic simulator assignment is divided into milestones. The first milestone consists
of writing a main program which just calls the initialize animator routine and is exe-
cuted with its standard output redirected to the animator. These few lines of code allow
the students to see how easy it is to bring up the graphical interface. The second milestone
consists of setting up and initializing the data structures used for storing the state of the Mic-
1 machine and sending the initial values of the sixteen registers to the animator. At this
point students have written very little code, but they can see how the animation will progress.
They can try out several of the routines for controlling the graphical display and get a feel
for what will be involved in the simulation. The milestones progress in simple steps until
the entire simulator is complete.

The simulator takes simple input commands for single stepping and for turning on and
off the dynamic updating of the display. Even with fast hardware, it takes several seconds
to show a full Mac-1 instruction cycle so for testing more than a few Mac-1 instructions, it
is convenient to not show the detailed execution at each Mic-1 subcycle. The simulator can
execute about a thousand Mac-1 instructions per second with the display updating turned
off when run on a low-end Sun workstation.

The Mac-1 assembly language is cumbersome for manipulating arrays since it does not
have indirect addressing except through the stack pointer and accumulator. In the next as-
signment students add a number of instructions for indexed addressing. The new assembly
language is called the Mac-1a. The students are given a Mic-1 assembler at this point and
told to modify the control store to implement the new instructions. The opcode encoding for
the new instructions is left to the students and they are challenged to find the most efficient
encoding and control store program which maintains binary compatibility with the old ma-

8



chine. This leads to a good discussion of the consequences of binary compatibility over sev-
eral generations. They also make a few minor modifications to their simulator to keep track
of the number of Mic cycles and Mac instructions executed. Since the animator displays
the decoded instruction register, some routines are included so that the student’s simulators
can communicate the information about the new Mac instructions to the animator.

One of the problems with the original simulator was the display of the Mac-1 memory.
It was left to the students to display this memory with an appropriate command to their sim-
ulator. This was done with text sent to standard error and was independent of the graphical
display. Towards the end of the semester, I modified the animator display so it could show
a part of the Mac memory as well as the cycle and instruction counts. The new animator
display is shown in Figure 3.

5 Discussion

The students are encouraged to add features to the basic simulator. Some of the features
added by the students or suggested by the instructor include:

� Execute until a Mac-1 fetch and decode are complete.

� Modify the control store so that the simulator stops when a particular Mac-1 opcode
is detected.

� The ability to unexecute instructions.

� Allow breakpoints.

� The ability to modify the memory while the simulator is running.

� Loading information about the assembly language encoding from a file.

� Analyze the program before execution. That is, run the code for a while and deter-
mine where in memory the program is and what memory locations are accessed. This
allows for displaying the memory locations in a format appropriate to their use.

� Add specific additional Mac-1 instructions chosen by the instructor, keeping binary
compatibility with the original Mac-1 machine.

� Add general purpose Mac-1 instructions chosen by the students which are designed
to make certain functions efficient, such as accessing arrays.

� Add an interrupt capability.

� Add (memory mapped) I/O capability.

9



Figure 3: The animator display for the second version of the simulator.

10



In addition, the simulator can be modified to simulate other microcoded machines. Some
of the possible changes include:

� Change word length.

� Change the memory access time.

� Add instruction decoding hardware.

A survey was distributed on the last day of class. Students indicated that they thought
the simulator project enhanced their understanding of microprogramming and how comput-
ers worked in general. They also found the project interesting and enjoyed working on it.
The latter may be the most important benefit in that students learn best when working on
something they enjoy.

Other instructors are encouraged to use this simulator project. The following are avail-
able via anonymous ftp [9]. Essentially everything is available except for the simulator
source code which the students should write.

� A simple Mic-1 assembler for generating the control store for the simulator.

� The source code for the XTANGO animator routines for the Mic-1 simulator.

� A makefile for compiling and linking the simulator and animator routines.

� A simple Mac-1 assembler for generating the memory image for use by the simulator.

� Copies of the assignments given to the students in one semester.

� A simple Mic-1 simulator executable for Sun Solaris 2.

� A simple Mic-1 simulator executable for Linux.

� Information about obtaining the XTANGO package.

Appendix: Details of the MIC-1 and MAC-1 Machines

This appendix provides an overview of the Mic-1 and Mac-1 from Tanenbaum’s book.
Refer to Figure 1 in the text during the discussion.

The Mic-1 instruction cycle consists for four subcycles. On the first subcycle the mi-
croprogram counter (MPC) picks out one of the 256 possible words in the control store,
and this value is stored in the microinstruction register (MIR). On the second subcycle one
of the sixteen registers is stored in the A latch and one in the B latch. The A and B fields
of the MIR determine which registers are chosen. The AMUX bit in the MIR determines

11



whether the left input to the ALU comes from the memory buffer register (MBR) or the A
latch. The ALU bits control the ALU functions (add, and, pass A, complement A) and the
SH bits control the Shifter which can shift one bit to the left or right, or not shift at all. The
result of this combinational logic is assumed to be available by the start of subcycle 4. In
the meantime, during subcycle 3 the low 12 bits of the B latch are stored in the memory
address register (MAR) if the MAR bit of the MIR is set.

On subcycle 4, the result from the Shifter is stored in the MBR if the MBR bit of the
MIR is set. The result is also stored in the register specified by the C field of the MIR if
the ENC (enable C bus) bit is set. Additionally on subcycle 4, the COND bits of the MIR
along with the negative (N) and zero (Z) flags of the ALU determine the next address to be
loaded into the microprogram counter (MPC). The options are to increment the MPC or to
use the branch address stored in the ADDR field of the MIR. The possibilities are branch
never, branch always, branch on zero, or branch on negative.

A Mic-1 cycle can also initiate either a read or a write operation as determined by the
RD and WR bits of the MIR. Main memory is accessed by writing the address in the MAR.
For a read, the RD control line is activated for two Mic-1 cycles. The value read is then
available in the MBR and can be moved into one of the sixteen Mic-1 registers. For a write,
the value to be written is moved to the MBR, and the WR line is activated for two Mic-1
cycles. This stores the value in memory.

Overview of the Mac-1
Tanenbaum gives a control store for the Mic-1 (just 79 words) which implements a sim-

ple assembly language instruction set called the Mac-1. The 23 instructions of the Mac-1
include load, store, add, and subtract instructions for a simple accumulator machine using
direct and stack addressing. Other instructions include push, pop, call, return, and jump.
Four of the Mic-1 registers represent the program counter (PC), accumulator (AC), the stack
pointer (SP), and the instruction register (IR) of the Mac-1 machine. Two other registers are
used for scratch registers. Five registers hold constants and the remaining five of the sixteen
Mic-1 registers are not used by the control store which implements the Mac-1.

The basic instruction cycle for a Von Neumann machine such as the Mac-1 consists of
instruction fetch, increment program counter, decode instruction, and execute instruction.
The Mac-1 instruction cycle is started with the execution of microinstruction zero. The in-
struction whose address is contained in the PC is read into the instruction register, the PC is
incremented, and the instruction is decoded. The decoding takes a long time on the Mic-1
because it is done by examining the bits of the instruction one at a time. The decoding is
not described here.

As an example of instruction execution, consider the Mac-1 POP instruction which re-
moves the memory value at the top of the stack and puts it into the accumulator (AC). POP
can be described functionally as: ac �
 m�sp�� sp 
 sp���

12



The Mac-1 POP is implemented by three instructions in the Mic-1 control store:

mar �
 sp� sp �
 sp � �� rd�
rd�
ac �
 mbr� goto ��

The first of these instructions does two operations. It starts the memory read necessary to
obtain the word on the top of the stack, and it increments the stack pointer. Since memory
operations take two Mic-1 cycles, the next instruction just waits for the read to complete by
keeping the RD line active. In the third instruction, the result read from memory is moved
from the MBR into the AC. The instruction then transfers control (goto �) to the part of
the microprogram which starts the next Mac-1 instruction cycle.

Let us look in detail at how the first of these instructions is executed in a single cycle
of the Mic-1 machine. Since the Mic-1 is also a Von Neumann machine, the instruction cy-
cle of the Mic-1 also consists of the operations of (micro)instruction fetch, increment (mi-
cro)program counter, decode (micro)instruction, and execute. Here is how this is done on
the four subcycles of the Mic-1.

On the first subcycle, the instruction pointed to by the MPC is moved from the con-
trol store into the MIR. Since each collection of bits in the control store has an independent
control function, the instruction is already decoded. A control store with this property is
called horizontal. The next three subcycles perform the execution and the incrementing of
the MPC. The microinstruction: mar �
 sp� sp �
 sp � �� rd� is given below:

AM
UX

COND

ALU
SH M

BR
M

AR
RD W

R
ENC

C B A ADDR

1 00 00 00 0 1 1 0 1 0010 0010 0110 xxxxxxxx

On subcycle 2, the register in the A field of the MIR is moved into the A latch and the register
in the B field is moved into the B latch. Register 6=������� has the constant one, and register
2=������� is the SP. The AMUX field of 1 selects the A latch as the left input of the ALU.
The ALU field of 0 specifies that the ALU should add its two inputs, and the SH field of 0
indicates that the Shifter should not shift. After some delay determined by the speed of this
combinational logic, the output of the Shifter will be SP+1.

On subcycle 3, since the MAR field of the MIR is 1, the contents of the B latch (the SP
register) is stored in the MAR. Since the RD field is one, a read cycle is started.

On subcycle 4, since the ENC (enable C bus) field of the MIR is one, the Shifter output
is stored in the register in the C field of the MIR. This is register 2, which is the SP register.
Thus, the SP register has been incremented. Because the MBR field is 0, the Shifter output
is not stored in the MBR. The COND field of 0 indicates that no jump is to be performed
and so the left input of the Mmux is used to load the new value of the MPC. This increments
the MPC. The ADDR field is not used by this microinstruction since no branch occurred.

13



References

[1] M. Cutler and R. R. Eckert, “Microprogrammed Computer Simulator Tools,” IEEE
Trans. Educ., vol. 33, pp 212—220, May 1990.

[2] R. J. Distler, “A Simulator for a Bit-Slice Computer,” IEEE Trans. Educ., vol. 33, pp
363—365, Nov. 1990.

[3] W. K. Fuchs, W. Page, J. H. Patel, P. Tobin, “Workstation-Based Logic Animation
and Microarchitecture Emulation for Teaching Introduction to Computer Engineer-
ing,” IEEE Trans. Educ., vol. 32, pp 218—224, August 1989.

[4] J. O. Hamblen, A. Parker, and G. A. Rohling, “An Instructional Laboratory to Support
Microprogramming,”, IEEE Trans. Educ., vol. 33, pp 333—336, Nov. 1990.

[5] R. P. Paul Sparc Architecture, Assembly Language Programming, & C, Prentice Hall,
1994.

[6] G. Puvvada and M. A. Breuer, “Teaching Computer Hardware Design Using Commer-
cial CAD Tools,” IEEE Trans. Educ., vol. 36, pp 258—163, Feb. 1993.

[7] J. T. Stasko, “Animating algorithms with XTANGO,” SIGACT News, vol. 23, number
2, pp 67-71, 1992

[8] A. S. Tanenbaum, Structured Computer Organization, Third Edition, Prentice Hall,
1990.

[9] Anonymous ftp from ringercsutsaedu in pub�simulators�mic�.

14


