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Abstract. JOTSA (Java On Time Synchronous Animation)
is an environment for web-based animation of algorithms
and data. On time refers to the moving of objects so that they
complete their movement at a known time, independent of
the hardware or operating system of the target machine. Syn-
chronous refers to the coordination of the movement of sev-
eral objects. JOTSA was motivated by the need to represent
exact timing relationships in network protocols and other
time-critical applications in a platform-independent manner.
JOTSA provides a web-based user interface which is a nat-
ural vehicle for remote execution and wide dissemination.
In addition to exact time animation, JOTSA supports multi-
ple dependent or independent views, panning and zooming,
linking of collections of objects, event-driven simulation,
and synchronization. Applications have the full resources
of the Java virtual machine and can be written to support in-
teraction in a way that is familiar to the user.

1 Introduction

JOTSA (Java On Time Synchronous Animation) is a Java
animation package for performing interactive animations.
JOTSA’s representation of movement is based on the path-
transition paradigm [25]. On time refers to the moving of ob-
jects so that they complete their movement at a known time,
independent of the hardware or operating system of the tar-
get machine. Synchronous refers to the coordination of the
movement of several objects. If two objects are supposed to
maintain a certain relationship as they move, that relation is
exactly maintained on the display. JOTSA is written in the
Java language [2], so it can be used on most modern plat-
forms. JOTSA animations can be run over a network through
a standard browser, and JOTSA has facilities which make it
suitable for animation of user-written event-driven or time-
driven simulations.

JOTSA was motivated by the need to develop interac-
tive animated simulations of network protocols. In a typi-
cal network protocol, two or more processes communicate
using handshaking. In the simplest case, one process sends
a packet and waits for an acknowledgment. The next action

depends on the timing of events that are not under the control
of the sender, e.g. whether an acknowledgment arrives be-
fore the timeout. In an interactive simulation, the user should
be able to affect the behavior of the simulation, say by de-
stroying an acknowledgment before it reaches the sender.
The user interaction makes interactive simulation nondeter-
ministic in contrast to non-interactive simulations where the
result of a given transmission is predetermined by the input
to the simulator.

The design goals of non-interactive and interactive sim-
ulations are very different. A typical design goal for non-
interactive simulation is to produce the results as soon as
possible. The completion time depends either on the size of
the time step (time-driven simulation) or the granularity of
the events (event-driven simulation). In either case the ex-
ecution time depends on the speed of the underlying hard-
ware and software of the simulator. A design goal of in-
teractive simulation is to have the simulated time appear to
flow at a smooth, predictable rate. Ideally, this rate should
be independent of the platform and the amount of compu-
tation required. Network protocols and many other simula-
tions typically have a time scale on the order of milliseconds
or microseconds. Rather than having these simulations run
as quickly as possible, animation of such protocols must be
scaled down to a human time scale of seconds.

The combination of an interactive simulation with ani-
mation for display poses certain difficulties. The animation
must accurately reflect the movement of time. There are two
aspects of this, the coordination of the animation with the
simulation and the coordination of simulation time with real
time. In many cases the time scale of the underlying system
is so fast compared to the human time scale, that the simula-
tion needs to be slowed down by a factor of 1000 or more to
allow for human interaction. Performing the computations
for the simulation fast enough is not a problem. The anima-
tion, on the other hand, poses severe restrictions on what can
be shown. A smooth animation might require 30 frames per
second, and such a display rate will tax even the fastest plat-
form if the animation is complicated.

With hardware speed increasing exponentially and effi-



cient Java implementations becoming available, animations
may become unusable when moved to faster platforms. The
author had just such a problem with an XTANGO applica-
tion [17] which ran at about the right speed on the SPARC
LX on which it was designed, but was much too fast when
the lab upgraded to SPARC 5’s and was lightning fast when
run on a 200 Mhz Pentium Pro. While it was possible to ad-
just the speed while the animation was running, the user had
to guess at the right setting for the particular hardware, and
the rate at which the animation ran also depended on what
other processing was occurring on the machine. JOTSA di-
rectly addresses these problems. A JOTSA animation runs
at the same rate on both fast and very fast hardware. This
exact time execution is particularly difficult in Java because
the user does not have direct control of the screen.

Section 2 discusses the related work, and Section 3 gives
an overview of JOTSA. Timing issues are discussed in Sec-
tion 4. Some simple examples are given in Section 5, and
the motivating network example is described in Section 6.
Section 7 addresses some performance issues and Section 8
presents a discussion of open issues in Java animation.

2 Related Work

The extensive work on algorithm animation is described
in the survey by Myers [13] and the definitive work of
Brown [5]. XTANGO [26] and POLKA [27] are X-based an-
imation libraries for C and C++ programs which motivated
the creation of JOTSA. XTANGO’s companion Animator
is a standalone program that does animation controlled by
ASCII strings sent to standard input. The Animator can be
used with any program by having that program generate ani-
mation commands that are piped into the Animator. POLKA
is a parallel animation library for animating the execution
of parallel programs. POLKA animations must be written
in C++ and the display is based on X. The Polka model has
been extended to include real-time animations with Polka-
RC [28]. In Polka-RC the program being animated and the
animation routines run as separate processes and communi-
cate using sockets.

A large number of simulation tools and languages with
built-in animation tools are available. Most of these must
be compiled for a particular system but are available on
several platforms. GPSS [24] is a special-purpose simula-
tion language oriented toward queuing systems which has
had many reincarnations [4, 8]. SIMSCRIPT II [23] is a
general programming language with features for building
simulation models. SIMGRAPHICS does back-end anima-
tion and front-end graphical input for SIMSCRIPT II. SIM-
MAN/Cinema [15] is a general purpose simulation and an-
imation language which has been used mainly in the manu-
facturing area. AweSim [14] is a general purpose simulation

system for MS Windows systems which represents simula-
tion objects by Windows bitmaps that can be moved around.
Simulators without direct support of animation can use an
add-on tool such as Proof Animation [10] to perform anima-
tions from trace data. Proof Animation works in a way simi-
lar to the XTANGO Animator, but the animation is done after
the simulation has completed, and it is designed specifically
for use with simulation languages.

Several Java-based simulation tools have recently been
announced. JSIM [1] is a simulation library which is inte-
grated with a database management system and is based on
Query Driven Simulation. Simkit [7] is a class library for
discrete simulation written in Java. Neither of these pack-
ages addresses the issue of exact time animation.

Project Horizon [11] is a cooperative agreement between
NASA and the University of Illinois to enhance web tech-
nology to better support public access to earth and space sci-
ence data. The Horizon Data Browser is a Java-based tool
for browsing and visualizing scientific data. It is still in the
alpha stage [30] of development but promises to provide a
number of useful tools for animating data over the web.

Mocha [3] uses a completely different model for algorithm
animation over the web that is not based on Java. The goal
of the system is to provide a high level of security to protect
algorithm code. As in the X Windows System model, Mocha
programs run on the remote machine and the user interface
runs locally. Mocha is still in the prototype stage.

The need to modify the display methodology when deal-
ing with time-critical visualizations in the context of 3D
modeling on high performance machines has drawn some re-
cent attention [6, 12]. Here we are interested in more modest
displays, but on commodity computers.

3 JOTSA Overview

JOTSA follows the object-oriented design paradigm of the
Java language. The JOTSA classJotsaAnimationObject
encapsulates all of the structures and methods needed to con-
trol a moving object. In the path-transition approach as im-
plemented here, a path is a mapping from virtual time into
a multidimensional space. At each point of time the object
has a position (x-y coordinates), a shape (e.g. rectangle or
oval), a size, an orientation, a color and other properties. By
default, all of these attributes are constant. In most cases, the
user will just specify how the position changes with time.

3.1 Shapes

JOTSA supports all of the geometric shapes supported by the
underlying Java language including rectangles, ovals, char-
acter strings, arcs, lines and polygonal paths. In addition,
regular polygons can be specified by the number of sides



and a radius. Multi-line strings can be specified by single
string containing newline symbols. JOTSA also supports ex-
ternally created images and movies consisting of sequences
of images. These movies can be displayed in real time in a
frame-accurate way.

3.2 Position

The natural representation of an object may depend on the
intended use. A standard way of specifying the position of
a character string is by the coordinates of its lower left cor-
ner. This coordinate system is appropriate if the string is to
be left justified. However, if the string is to be put in a cir-
cle, it is more convenient to specify the center of the string.
The standard Java coordinate system defines (0,0) at the up-
per left corner of the applet window. Java supports specify-
ing the position of a rectangle by its upper left corner, the
position of an oval by the upper left corner of its bounding
rectangle, the position of a string by its lower left corner and
the position of a polygon by the coordinates of the vertices.

While the Java coordinate representations are appropriate
for some applications, the selection of a particular vertex of
a rectangle as its origin is somewhat arbitrary. JOTSA sup-
ports a centered object coordinate system in addition to the
standard Java coordinate system. Specifying objects by their
centers leads to a natural way of grouping objects together
and manipulating them as a group. For example, a polygon
can be represented by the coordinates of its center and the
relative positions of the vertices from the center. Moving the
polygon just requires changing the coordinates of the center
position. JOTSA also allows the position of one object to be
specified relative to that of another object so that objects can
be moved as a group.

3.3 Size

Another attribute that can change along a path is the size of
an object. Rectangles and ovals have a size parameter for
each dimension, while character strings and regular poly-
gons have one such value. The size of a string is the pointsize
of its font, and the size of a regular polygon is its radius.

In JOTSA, the size of an object on the screen is deter-
mined by its size parameters and several scaling factors. The
size parameters are integers representing a number of pixels.
The scaling factors are doubles to allow for smoothly chang-
ing the size of an object along its path without accumulating
roundoff error. A single scaling factor can be used to change
the size of several objects in a coordinated way.

3.4 Collections

A JOTSA collection consists of a controlling object called
themaster and one or more additional objects calledslaves.

The relationship between a master and a slave in JOTSA is
set up so that a master and all of its slaves act as a unit. Com-
plex objects can be generated from simpler ones. When the
master moves, the entire collection moves in a coordinated
way. When the master is scaled in a given dimension, the
slaves are similarly scaled and their positions are adjusted
so that the unit is scaled.

Figure 1a) shows a circular master object and a number of
slave rectangles. All scaling factors are one. The positionsof
the rectangles are specified by the positions of their centers
relative to the center of the master. The center of each object
is marked with a small dot, although in JOTSA it would not
normally be shown. Figure 1b) shows the same collection
when the scaling factors of the circle master object have be
changed to 2.0 in the x-direction and 0.5 in the y-direction.

a) b)

Figure 1: A collection of rectangles with a master circle.

In order to preserve a collection under scaling, JOTSA
defines two positions for each object. The position that an
object appears on the screen is called itsabsolute position.
Each object also has a pair of�x� y� coordinates called its
natural position which by default is the same as the abso-
lute position. When an object is a slave within a collection,
its natural position represents the position of the object rela-
tive to the master. In the same way, each object has absolute
and natural size parameters and other scalable attributes.

Suppose that the master has absolute x-coordinateXm and
scaling factor in the x-direction,sm. If a slave has natural x-
coordinatexs, scaling factor in the x-direction,ss, and nat-
ural size (width) in the x-direction,ws, then the absolute x-
coordinate of the slave,Xs, and the absolute width of the
slave,Ws are:

Xs � Xm � smxs

Ws � smssws

Notice that the scaling factor of the master affects both the
position and size of the slave, while the scaling factor of the
slave affects only its size. Figure 1 shows why this scal-
ing method produces the desired result. When the master is
scaled by a factor of 2.0 in the x-direction, the difference in
the x-coordinates of the master and each of its slaves must



be doubled. Similarly, when the master is scaled by a factor
of 0.5 in the y-direction, the difference in the y-coordinates
of the master and each of its slaves must be halved. Usually
the master object is just used to control the slaves and is not
displayed.

When two collections are merged into one, all of the slave
objects in one collection are linked to the master of the other
collection and have their natural position and size modified
so that after the relinking, their absolute position and size
remain the same. The other master is then deleted.

When a master object is rotated, the position of its slaves
are similarly rotated. If the slave object is rotatable, the slave
is also rotated about its center so that the rotation of the mas-
ter and slave behave as a rigid rotation of the two objects.
Certain JOTSA objects (such as ovals) cannot be rotated. In
this case the positionof the slave is rotated, but its orientation
stays fixed relative to the screen when the master is rotated.

A more detailed description of JOTSA collections can be
found in [19].

3.5 Multiple Independent Synchronized Views

JOTSA animation is done in one or more rectangular por-
tions of the screen called canvases. Each canvas is associ-
ated with a set of objects which are to be displayed in that
canvas. JOTSA synchronizes the canvases so that all can-
vas displays correspond to the same virtual time. Because
of this synchronization, different canvases can show differ-
ent views of the same scene.

3.6 Multiple Dependent Views

JOTSA supports panning and zooming. In fact, each canvas
can have any number of scalable windows associated with
it. Each such window shows the same objects as the parent
canvas, but the view can be scaled (zoomed in or out) and
translated (panned). While Java supports scaling of any im-
age on the fly, rescaling an image of a moderate size takes on
the order of a second on a moderately fast machine. This is
at least an order of magnitude too slow for animation in real
time. JOTSA redraws the objects with the appropriate size in
the scaled window instead of using the intrinsic Java scaling.
As long as the number of objects is not too large (say, less
than 100), this approach is considerably faster than scaling
the image produced by drawing the objects.

3.7 Data Animation

In addition to supporting simulation and animation of algo-
rithms, JOTSA supports animation and visualization of data
with time critical features that must be preserved indepen-
dent of the platform. The animation in [16] describes an ex-
periment in which physicists made a videotape of an exper-
iment. The videotape was digitized and the critical features

were animated. The animation incorporates fading, overlaid
cues and linking of objects across views to improve visual
persistence. JOTSA allowed the animation to be adjacent to
or to be superimposed upon the original movie.

4 Timing Issues

In traditional animation paradigms, virtual time is monoton-
ically increasing and changes at a rate determined by the
amount of processing required at each time step or event and
by the speed of the hardware that is running the program.
Unlike other virtual-time systems, JOTSA’s virtual time is
directly linked to real time. The user specifies the speed of
virtual time by a rate that connects virtual time to real time.
When the rate is 1.0, virtual time and real time run at the
same rate. When the rate is less than one, virtual time runs
more slowly. For example, a rate of 0.5 indicates that virtual
time runs at half the speed of real time.

A JOTSA animation specifies how an object moves in
terms of virtual time. In the simplest case, an object moves
along a straight line at a constant rate. The movement is
specified by the endpoints of the path and the length of time
(in virtual time) it takes to traverse the path. The user is
then guaranteed that the object will be done moving after the
given amount of virtual time. If the virtual time rate is 1.0,
the user knows the real time at which the movement will be
complete. The rate at which the object moves on the screen
is independent of both the speed of the hardware and how
much other processing (other objects moving or other pro-
cess activity) is taking place.

Exact time execution comes with a price. If the hardware
is too slow to handle the processing that needs to be done, the
motion may look jumpy. If this is unacceptable to the user,
virtual time can be slowed down. From the point-of-view of
the developer of the animation, the animation is written in
terms of motion in real time, and the algorithms are written
in term of real time.

The basic assumption in JOTSA animations is that the dis-
play takes up most of the processing time and that the CPU
can easily keep up with the processing necessary to do ev-
erything other than the display. Under these circumstances,
JOTSA ensures that the non-display processing can be done
fast enough to keep up with the flow of virtual time by lim-
iting the display updates.

4.1 When to Repaint

One difficulty with implementing time-appropriate anima-
tions in Java is the lack of user control of when the screen is
painted. Each Java canvas has its ownpaint method which
cannot be called directly by the user. The user must request
that the run-time system callpaint by executing the canvas’s



repaint method. By givingrepaint an optional parameter,
the application can suggest the number of milliseconds be-
fore thepaint occurs. Unfortunately this value is just a sug-
gestion.

A possible repaint strategy is to try to maintain a reason-
able frame rate of about 30 frames a second. This is enough
the ensure that the animation will look fairly smooth. How-
ever, this strategy would probably use up most of the CPU
capacity of a moderately fast machine. One of the design
goals of JOTSA is to be CPU-friendly: unless it is needed,
the CPU should be available to other processes. This goal is
not completely altruistic. Java is naturally threaded, and a 30
frames per second display rate would leave little processing
power for the non-display threads of the simulation.

CPU friendliness implies that the display should not re-
quire much processing power when nothing is changing on
the display. However, when objects are moving rapidly, it
is acceptable to use the full power of the CPU, especially if
this rapid movement is short-lived. As long as an object is
already being displayed at each pixel position along its path,
redisplayingmore often would not improve the quality of the
display of this object. In a typical animation there will be
times when objects are moving and times when they are sta-
tionary. The optimal display rate is therefore dynamic.

Information about the path is part of the object’s class, so
each object should determine its own redisplay rate. Hav-
ing each object cause a redisplay would be too inefficient so
this is done by a master thread. The master thread gets the
recommended redisplay rate from each object and takes the
maximum rate within a certain predetermined interval. Each
time an object is drawn to the screen, the optimal redisplay
rate for that object is calculated and delivered to the applet.

4.2 How to Paint

Since JOTSA supports multiple canvases, the issue of how
to coordinate the paint methods of each canvas must be ad-
dressed. Here are five approaches for coordinating paint
methods:

Method 1: The paint methods are completely indepen-
dent. Each canvas has a thread that periodically repaints
the screen at a rate determined by the objects displayed in
that canvas. While simple to implement, this method does
not provide any guarantees of synchronization between can-
vases.

Method 2: The paint methods are independent, that is,
each executes as a result of arepaint request for that canvas,
but all repaints use the same virtual time. A master thread
determines when to repaint based on all objects displayed.
All of the objects calculate their positions based on the same
virtual time until the master thread calls therepaints again.

Method 3: The canvas’spaint method copies a tempo-
rary image to the screen. A master thread requests each can-

vas in turn to fill the temporary image with objects based on a
common virtual time. When the image is complete, the mas-
ter thread calls each canvas’srepaint. This approach is a mi-
nor modification of Method 2 that requires some additional
synchronization, sincepaint should not access the tempo-
rary image while it is being modified.

Method 4: Each canvas steals the graphics context from
its paint method allowing it to paint directly without calling
repaint. The master thread has all canvases paint serially in
a predetermined order using the same virtual time.

Method 5: Each canvas draws all objects to a temporary
image rather than directly to the screen. When all objects
have been drawn to the temporary images of all canvases, the
canvases draw that image to the screen. This minor modifi-
cation of Method 4 minimizes the delay between the updat-
ing of the screen for the various canvases.

Methods 2, 3, 4 and 5 have been implemented, and a study
is being conducted to determine which produces the best re-
sults.

4.3 Time Driven Simulation and Movies

In time driven simulation, virtual time is incremented by a
fixed amount at each time step. Similarly, movies are usually
shown at a fixed frame rate. JOTSA supports the ability to
display at a given frame rate. If the animation for a given
movie frame cannot be displayed in time for the next frame,
some frames will be lost. If an animation time step cannot
be displayed fast enough, the display of some time steps will
not appear, but the computation for each time step is done so
that the simulation is correct. It is assumed that most of the
processing is due to the display rather than the simulation and
the simulationprocessing can be done fast enough to keep up
with the passage of virtual time.

4.4 Synchronization and Events

Java supports synchronization though the use of monitors.
Each object is potentially a monitor, and the key wordsyn-
chronized is used to include methods in the monitor. Instead
of condition variables, each monitor has its ownwait and
notify methods. Notify events are not queued, and anotify
sent while the corresponding thread is not waiting is lost.

JOTSA supports synchronization through the display ob-
jects. When an object is done moving it can notify a thread
that it has finished. JOTSA allows a thread to atomically start
an object moving and wait for the object to reach its final po-
sition. This capability allows an animation to avoid the race
condition in which an object finishes its motion and attempts
to notify the thread before the thread has begun waiting.

In addition to the wait-notify mechanism implemented di-
rectly using the corresponding Java methods, JOTSA also
supports sleeping for a given virtual time and a queued event



list in which events are put in a queue and taken out using a
FIFO discipline. These features are convenient in more com-
plicated simulations in which events can be generated asyn-
chronously to the waiting thread while the waiting thread is
doing other work. Events can also be generated by an arbi-
trary number of JOTSA timers.

4.5 Scheduling

While JOTSA events and synchronization methods are not
difficult for the programmer familiar with thread program-
ming, experience with teaching advanced undergraduate
computer science majors to use Java indicates that pro-
gramming with threads is a difficult and time consuming
process for the inexperienced programmer. Java program-
ming (without threads) is actually quite simple, and students
who have programmed before pick it up quickly. The Java
environment uses threads to wait for common events such
as keystrokes, mouse clicks or mouse movements, but these
are easy to use as the implementation is transparent to the
user. Such actions generate events that call an event handler
which the user overrides to handle these events. Thus,
although the Java programming environment is naturally
threaded, this aspect of Java is mostly hidden from the
programmer.

JOTSA provides a method for handling sequences of ob-
ject motions without the need to deal with thread program-
ming. An object can be set to generate an event captured by
the standard JavahandleEvent handler. These new events
indicate completion of object movement. A second interface
under development is a scheduling class that schedules ob-
ject movements using a procedural interface.

5 A Simple Example

An applet which uses JOTSA is a class that extendsJot-
saAnimationApplet. A minimal JOTSA applet must per-
form the following steps in itsinit method:

● Call super.init();
● Set up a layout which includesJotsaDefaultCanvas

as one of its components.
● Make sure the components have been laid out by

callingvalidate();
● Call JotsaInitImages();

In the simplest case, to move an object requires the fol-
lowing steps:

● Create the object usingnew JotsaAnimationObject;
● Set the type of the object to be displayed.
● Set the path the object is to move along.
● Set the virtual time it takes to move the object.
● Insert the object in the list of displayable objects.

● Activate the object to start it moving.

When aJotsaAnimationObject is created, its initial po-
sition, a level number and a key are given. Thelevel number
determines the order in which objects are displayed and thus
which objects cover other objects. Thekey can be used at a
later time to destroy the object. The level and key can be
omitted and JOTSA will automatically choose unique ones.
An example of code to create an red oval that fits in a rectan-
gle 100 pixels wide and 50 pixels high is given below. The
oval is moved so that its center travels along a straight line
from the point (150, 200) to (250, 300) in 5000 milliseconds.

JotsaAnimationObject obj;
obj = new JotsaAnimationObject(150, 200, this);
obj.SetFillOval(100, 50, Color.red);
obj.SetPositionCentered();
obj.PathCreateAlongLine(150, 200, 250, 300);
obj.TimesSet(5000);
JotsaInsertObject(obj);
obj.Activate();
A complete applet illustrating this action is about a page

in length and can be found on the web [20]. A more com-
plicated example that illustrates most types of JOTSA ob-
jects can be found in [21]. These two examples are described
in [18].

To move an object and wait for it to complete its motion
requires a thread, since a Java applet is not allowed to sleep.
JOTSA provides a class calledJotsaWaitingThread to sim-
plify this operation. The user creates a thread that extends
this class, creates the object, and instead of activating the
object, executes:JotsaWait(obj). This atomically starts the
object moving and suspends the thread until the object has
completed its motion. It handles the synchronization neces-
sary to avoid the race condition in which the object finishes
its motion before the thread is suspended. An example illus-
trating this can be found in [22].

6 The Motivating Example

JOTSA was motivated by the need to perform an animated
simulation of network protocols. The concept was proven by
implementing interactive animated simulations of the data
link layer protocols described in a standard computer net-
works text [29].

Figure 2 shows the initial display for a unidirectional ver-
sion of protocol 5 of [29], a sliding window protocol. The
windows of the sender and receiver are shown as well as
statistics for the sender and receiver. The user can pull up
a control window and adjust the various parameters such as
error rates and timeout values. At any time the simulation
can be paused and parameters can be adjusted. In this sim-
ulation, the sender and receiver are separate, independent
threads. Each thread implements its part of the protocol, and



the JOTSA environment does the event handling and the an-
imation. The code for each thread closely matches the net-
work algorithm. The user controls the animation by making
packets available to the sender from the network layer and
by controlling the type of errors that occur.

Figure 3 shows a snapshot of the display after a group of
frames has been sent. As each frame is sent, a JOTSA timer
is set to generate a timeout event for the sender thread. The
simulation does not determine at this point whether the trans-
mission will be successful or not. The error mechanism can
be independent of the transmission, and a frame or acknowl-
edgment can be destroyed at any time due to a statistically
driven automatic error mechanism or by the user clicking
on a frame to destroy it while in transit. The transmission
of the frame is represented by a JOTSA object in motion.
When the motion finishes, the object generates an event that
notifies the receiver thread of a frame arrival. The receiver
then generates an acknowledgment frame. If the acknowl-
edgment frame arrives, it generates a frame arrival event for
the sender.

Since event generation can be tied to the motion of a
JOTSA object, the simulation closely parallels the actual
transmission of data.

For each of the six protocols that have been implemented,
a number of scenarios have been developed illustrating fea-
tures of that protocol. For example, in Protocol 5 the receiver
has a window of size one. This means that frames cannot be
accepted out of order. If a frame is lost, as is frame number 3
in Figure 3, the receiver must discard all subsequent frames
and all frames after the lost one must be resent. Clicking
on theCommentary button will bring up a running dialog
box containing a commentary which is synchronized with
the running of the protocol. Optionally, an audio description
is available. The audio commentary is particularly effective
because it allows the user’s eyes to focus on the main ani-
mation display.

A drawback of the Java security model is that it only al-
lows applets to read files from the server from which the ap-
plet was obtained. For example, if the applet resides on a ma-
chine calledappletserver, and a user is running a browser on
a machine calledappletclient, then the applet can read files
stored onappletserver, but it cannot read files stored onap-
pletclient. The scenarios are configured by files which are
read in by the applet. Generally, the user will not have di-
rect access to theappletserver machine. The Java security
model thus prevents the user from writing his own scenar-
ios. To enable this, the user would have to have a web server
and load the JOTSA applets directly on this web server. This
would defeat some of the main advantages of using the web.

The entire application and the JOTSA environment must
be loaded onto the client machine before the applet can be
run. While this is automatically done when the web page

is accessed, it can take a while if the network connection
is slow. The JOTSA code is about 150K bytes in size and
so is the application in this example. The first time it is
run, 300K bytes must be downloaded. JOTSA need only be
downloaded once, and additional JOTSA applets can be run
without the JOTSA part being downloaded again. This ex-
ample application is quite large, and a typical JOTSA applet
might only be about 10-20K bytes in size.

While the audio description of the scenarios can greatly
add to their usefulness, the sound files must be downloaded
over the network. A typical scenario might require 10 to 20
sound files of about 20K bytes each. Thus the sound data
may far exceed all of the rest of the network traffic of a par-
ticular application.

7 Performance Issues

Java performance varies considerably between platforms.
Standard Java applications will run more slowly under a
slower implementation, but JOTSA applications run at the
same speed on all platforms as long as the display is the lim-
iting factor to the speed.

The main consequence of slow platforms on JOTSA ap-
plications is a jerky display.When a moving object cannot
be displayed at almost every pixel position along its path, its
motion does not appear to be smooth. Most JOTSA appli-
cations will have a slider to control the rate of virtual time
and the user can slow down the flow of time if the display
quality is not sufficient. In the example shown in Figures 2
and 3, such a slider is brought up by pushing theControls
button.

The time it takes JOTSA to display a frame depends on a
number of factors including the size of the window to be dis-
played and the number and types of objects to be displayed.
The time for a single update is almost independent of the mo-
tion of the objects, but the speed of movement determines
how often the display should ideally be updated.

JOTSA allows the display to be broken up into several
rectangular pieces, called canvases. The display of the indi-
vidual canvases can be either synchronous or independent.
In the example in Figure 3, all of the moving objects are in
a rectangular region between the sender and receiver boxes.
This small area (about 150 by 150 out of 630 by 325) is a
separate canvas and is the only part that needs to be updated
often. The other six canvases only need to be updated when
an event occurs, typically less than once a second.

The maximum frame rate for a simple JOTSA applet on
different platforms is shown in Figures 4 and 5. In addi-
tion to processor type and speed, the frame rate depends on
a number of factors such as the particular Java implemen-
tation, the operating system, the display hardware and the
amount of memory on the target machine. The first of these



Figure 2: The initial display after protocol 5 is chosen.

Figure 3: A snapshot of the display and a commentary dialog after several frames have been sent. Frame 3 has been lost.



Number of Objects
Platform 1 2 4 8 16 32 64 128 256 512 1024
Sparc LX 50 Mhz 23 22 19 16 15 13 11 6 4 2 1
Sparc 4 110 Mhz 50 49 47 43 36 28 19 11 9 6 3
Sparc 20 60 Mhz 102 95 89 80 64 59 39 23 15 8 5
Sparc Ultra 167 Mhz 158 143 95 93 61 34 40 32 18 11 9
486 66 MHz Linux 28 26 25 21 19 14 9 5 3 1.5 0.7
Pent. 100 MHz Linux 78 82 74 64 54 37 25 16 12 7 3
Pent. Pro 200 Win95 18 18 18 18 18 18 18 14 7 3 3
Pent. Pro 200 NT 93 94 94 90 93 90 89 58 40 26 14

Figure 4: A table showingmaximum frame rates when using
a small window size of 100 by 100 on different platforms.

Number of Objects
Platform 1 2 4 8 16 32 64 128 256 512 1024
Sparc LX 50 Mhz 9 10 9 9 8 7 8 5 3 2 1
Sparc 4 110 Mhz 13 14 13 13 11 11 9 6 6 5 3
Sparc 20 60 Mhz 25 25 25 25 25 25 21 19 13 10 6
Sparc Ultra 167 Mhz 25 26 25 27 28 26 17 16 11 9 7
486 66 MHz Linux 16 17 15 14 14 9 7 4 3 1.4 0.7
Pent. 100 MHz Linux 15 15 14 13 13 11 10 8 10 5 3
Pent. Pro 200 Win95 18 18 18 18 18 17 15 9 6 3 1
Pent. Pro 200 NT 14 14 15 15 14 13 13 12 11 10 8

Figure 5: A table showingmaximum frame rates when using
a large window size of 800 by 800 on different platforms.

figures shows the maximum frame rate for a small window
of size 100 by 100 pixels, and the second one is for a large
window of size 800 by 800. The larger window represents
64 times as many pixels as the smaller one. In most cases for
the small window, the number of objects is the main deter-
mining factor on the display rate. For the larger window, the
number of objects does not significantly affect the display
rate until it exceeds some threshold.

The Pentium Pro platform is an exception to this. While
it is faster than most of the other systems as shown by
its NT performance, the Pentium Pro under Windows 95
has a maximum frame rate of less than 20 frames per sec-
ond, even for one object in a small window. This sur-
prising result was traced to the Java time functionSys-
tem.currentTimeMillis(). This function is supposed to re-
turn the system time in milliseconds, and JOTSA uses it to
compute when to issue the next display request. Consecutive
calls to this function should return values which differ by 0 or
1, and this behavior was confirmed on the Sun systems and
on the Intel systems running Linux. Under NT differences
were either 0 or 10. However, under Windows 95 the non-
zero differences are either 50 or 60. This coarse granularity
of time prohibits JOTSA from making the precise calcula-
tions needed for higher frame rates.

8 Discussion

Prior to the introduction of Java, many web-based anima-
tions used a model of execution based on the X Window Sys-
tem [9]. In this model the software runs on the remote ma-
chine (the X client), and the display appears on the local ma-
chine (the X server). There are three major disadvantages to
this model. The computing burden is on the remote machine
requiring the software provider to supply sufficient comput-
ing power for all users. Secondly, the system puts a heavy
load on the network while the programs are running, making
the speed of the animation dependent on the network traffic.
Thirdly, while X servers can be obtained for most systems,
they are not normally installed on the most ubiquitous ma-
chines, those running Microsoft operating systems.

The Internet community has focused on Java as the lan-
guage for the web. Java holds the promise of platform inde-
pendence based on a model of compile once, run anywhere.
To some extent this has been already achieved with the core
of the Java language. In the Java model, the program is com-
piled into an intermediate form and stored on the remote ma-
chine (the server). It is downloaded to the local machine (the
client) when it is accessed. The Java program is run on the
local machine, usually with an interpreter. Once the pro-
gram has been downloaded there is no longer any demand
put on either the remote machine or the network. Since the
Java program is interpreted (or compiled on the fly at run
time), the same program will run on any system. However,
many problems still exist before true platform independence
is achieved.

While the Java Application Window Toolkit (AWT) has
the same features on all platforms, the look and feel varies.
The differences may actually be desirable under some cir-
cumstances, because the Java environment behaves in a way
that is familiar to the user on a particular platform. However,
certain aspects of this variability make it difficult to achieve
a satisfactory appearance on all platforms.

Fonts pose a particular problem when there is a need to
place text accurately among other displayed objects. The
size and shape of characters is different on different plat-
forms, since Java uses the text capabilities of the underly-
ing window environment. Consequently, the same character
string will take up a different amount of space when viewed
on different platforms. In Java, the width of a box is specified
by a number of pixels, while the width of a string is specified
by the font style and size. A Java program can determine the
width in pixels of a given string in a given font, but there is
no convenient method for ensuring that a string will fit inside
the box boundaries, other than by trial and error.

Sound support in Java is rather rudimentary. While au-
dio files can be played, audio control is limited. Sound clips
can be started and stopped, but there is no convenient way
to tell when a sound clip is finished. This makes it difficult



to properly sequence sound clips. A solution to this problem
has been promised in the upcoming Java Media Toolkit.

Another more important problem for animation is that the
speed of the hardware and the efficiency of the Java runtime
environment affect the speed at which Java programs run.
Unless care is taken, motion which is very slow on one ma-
chine will be very fast on another. JOTSA addresses this
aspect of platform-independent web-based animation. It is
particularly difficult in Java, since the user does not have di-
rect control of the repainting of the display. JOTSA has been
shown to be a powerful tool for web-based simulation and
animation of algorithms and physical processes. It has also
been used for animation of data in systems where exact time
is a critical feature.
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