The JOTSA Animation Environment

Steven Robbins
Division of Computer Science
University of Texas at San Antonio
srobbins@cs.utsa.edu

Abstract. JOTSA (Java On Time Synchronous Animation) depends on the timing of events that are not under the control
is an environment for web-based animation of algorithms of the sender, e.g. whether an acknowledgment arrives be-
and data. On time refers to the moving of objects so that they fore the timeout. In an interactive simulation, the user should
complete their movement at a known time, independent of be able to affect the behavior of the simulation, say by de-
the hardware or operating system of the target machine. Syn-stroying an acknowledgment before it reaches the sender.
chronous refers to the coordination of the movement of sev- The user interaction makes interactive simulation nondeter-
eral objects. JOTSA was motivated by the need to representministic in contrast to non-interactive simulations where the
exact timing relationships in network protocols and other result of a given transmission is predetermined by the input
time-critical applications in a platform-independentmanner. to the simulator.

JOTSA provides a web-based user interface which is a nat- The design goals of non-interactive and interactive sim-
ural vehicle for remote execution and wide dissemination. y|ations are very different. A typical design goal for non-
In addition to exact time animation, JOTSA supports multi- nteractive simulation is to produce the results as soon as
ple dependent or independent views, panning and zooming, possible. The completion time depends either on the size of
linking of collections of objects, event-driven simulation, the time step (time-driven simulation) or the granularity of
and synchronization. Applications have the full resources the events (event-driven simulation). In either case the ex-
of the Java virtual machine and can be written to supportin- ecuytion time depends on the speed of the underlying hard-
teraction in a way that is familiar to the user. ware and software of the simulator. A design goal of in-
teractive simulation is to have the simulated time appear to
flow at a smooth, predictable rate. Ideally, this rate should
be independent of the platform and the amount of compu-
tation required. Network protocols and many other simula-
tions typically have a time scale on the order of milliseconds
or microseconds. Rather than having these simulations run
as quickly as possible, animation of such protocols must be
scaled down to a human time scale of seconds.

1 Introduction

JOTSA (Java On Time Synchronous Animation) is a Java
animation package for performing interactive animations.
JOTSA's representation of movement is based on the path-
transition paradigm [25]. On time refers to the moving of ob-
jects so that they complete their movement at a known time,
independent of the hardware or operating system of the tar- The combination of an interactive simulation with ani-
get machine. Synchronous refers to the coordination of the Mation for display poses certain difficulties. The animation
movement of several objects. If two objects are supposed tomust accurately reflect the movement oftime. There are two
maintain a certain relationship as they move, that relation is @spects of this, the coordination of the animation with the
exactly maintained on the display. JOTSA is written in the simulation and the coordination of simulation time with real
Java language [2], so it can be used on most modern p|at_time. In many cases the time scale of the underlying system
forms. JOTSA animations can be run over a network through IS S0 fast compared to the human time scale, that the simula-
a standard browser, and JOTSA has facilities which make it tion needs to be slowed down by a factor of 1000 or more to
suitable for animation of user-written event-driven or time- @llow for human interaction. Performing the computations
driven simulations. for the simulation fast enough is not a problem. The anima-
JOTSA was motivated by the need to develop interac- tion, onthe other hand, poses severe restrictions on what can
tive animated simulations of network protocols. In a typi- Pe shown. A smooth animation might require 30 frames per
cal network protocol, two or more processes communicate second, and such a display rate will tax even the fastest plat-
using handshaking. In the simplest case, one process sendorm if the animation is complicated.
a packet and waits for an acknowledgment. The next action With hardware speed increasing exponentially and effi-

cient Java implementations becoming available, animations system for MS Windows systems which represents simula-
may become unusable when moved to faster platforms. Thetion objects by Windows bitmaps that can be moved around.
author had just such a problem with an XTANGO applica- Simulators without direct support of animation can use an
tion [17] which ran at about the right speed on the SPARC add-on tool such as Proof Animation [10] to perform anima-
LX on which it was designed, but was much too fast when tionsfrom trace data. Proof Animation works in a way simi-
the lab upgraded to SPARC 5’s and was lightning fast when lartothe XTANGO Animator, but the animation is done after
run on a 200 Mhz Pentium Pro. While it was possible to ad- the simulation has completed, and itis designed specifically
just the speed while the animation was running, the user hadfor use with simulation languages.
to guess at the right setting for the particular hardware, and Several Java-based simulation tools have recently been
the rate at which the animation ran also depended on what announced. JSIM [1] is a simulation library which is inte-
other processing was occurring on the machine. JOTSA di- grated with a database management system and is based on
rectly addresses these problems. A JOTSA animation runsQuery Driven Simulation. Simkit [7] is a class library for
at the same rate on both fast and very fast hardware. Thisdiscrete simulation written in Java. Neither of these pack-
exact time execution is particularly difficultin Java because ages addresses the issue of exact time animation.
the user does not have direct control of the screen. Project Horizon [11] is a cooperative agreement between
Section 2 discusses the related work, and Section 3 givesNASA and the University of lllinois to enhance web tech-
an overview of JOTSA. Timing issues are discussed in Sec- nology to better support public access to earth and space sci-
tion 4. Some simple examples are given in Section 5, and ence data. The Horizon Data Browser is a Java-based tool
the motivating network example is described in Section 6. for browsing and visualizing scientific data. It is still in the
Section 7 addresses some performance issues and Section &pha stage [30] of development but promises to provide a
presents a discussion of open issues in Java animation. number of useful tools for animating data over the web.
Mocha [3] uses a completely different model for algorithm
animation over the web that is not based on Java. The goal
2 Related Work of the systemiis to provide a high level of security to protect
algorithm code. Asinthe X Windows System model, Mocha
The extensive work on algorithm animation is described programs run on the remote machine and the user interface
in the survey by Myers [13] and the definitive work of | ns locally. Mocha is still in the prototype stage.
Brown([5]. XTANGO [26] and POLKA[27] are X-based an- The need to modify the display methodology when deal-
imation libraries for C and C++ programs which motivated jng with time-critical visualizations in the context of 3D
the creation of JOTSA. XTANGO's companion Animator modeling on high performance machines has drawn some re-

is a standalone program that does animation controlled by cent attention [6, 12]. Here we are interested in more modest
ASCII strings sent to standard input. The Animator can be gjgplays, but on commodity computers.

used with any program by having that program generate ani-
mation commands that are piped into the Animator. POLKA
is a parallel animation library for animating the executon 3 JOTSA Overview
of parallel programs. POLKA animations must be written
in C++ and the display is based on X. The Polka model has JOTSA follows the object-oriented design paradigm of the
been extended to include real-time animations with Polka- Java language. The JOTSA clakstsaAnimationObject
RC [28]. In Polka-RC the program being animated and the encapsulates all of the structures and methods needed to con-
animation routines run as separate processes and communitrol a moving object. In the path-transition approach as im-
cate using sockets. plemented here, a path is a mapping from virtual time into

A large number of simulation tools and languages with a multidimensional space. At each point of time the object
built-in animation tools are available. Most of these must has a position (x-y coordinates), a shape (e.g. rectangle or
be compiled for a particular system but are available on oval), a size, an orientation, a color and other properties. By
several platforms. GPSS [24] is a special-purpose simula- default, all of these attributes are constant. In most cases, the
tion language oriented toward queuing systems which has user will just specify how the position changes with time.
had many reincarnations [4, 8]. SIMSCRIPT Il [23] is a
general programming language with features for building
simulation models. SIMGRAPHICS does back-end anima-
tion and front-end graphical input for SIMSCRIPT Il. SIM- JOTSA supports all of the geometric shapes supported by the
MAN/Cinema [15] is a general purpose simulation and an- underlying Java language including rectangles, ovals, char-
imation language which has been used mainly in the manu- acter strings, arcs, lines and polygonal paths. In addition,
facturing area. AweSim [14] is a general purpose simulation regular polygons can be specified by the number of sides

Shapes

and a radius. Multi-line strings can be specified by single The relationship between a master and a slave in JOTSA is
string containing newline symbols. JOTSA also supports ex- set up so thata master and all of its slaves act as a unit. Com-
ternally created images and movies consisting of sequencesplex objects can be generated from simpler ones. When the
of images. These movies can be displayed in real time in a master moves, the entire collection moves in a coordinated

frame-accurate way. way. When the master is scaled in a given dimension, the
slaves are similarly scaled and their positions are adjusted
3.2 Position so that the unit is scaled.

Figure 1a) shows a circular master object and a number of
The natural representation of an object may depend on theslave rectangles. Allscaling factors are one. The positions of
intended use. A standard way of specifying the position of the rectangles are specified by the positions of their centers
a character string is by the coordinates of its lower left cor- relative to the center of the master. The center of each object
ner. This coordinate system is appropriate if the string is to is marked with a small dot, although in JOTSA it would not
be left justified. However, if the string is to be putinacir- normally be shown. Figure 1b) shows the same collection
cle, itis more convenient to specify the center of the string. when the scaling factors of the circle master object have be
The standard Java coordinate system defines (0,0) at the upehanged to 2.0 in the x-direction and 0.5 in the y-direction.
per left corner of the applet window. Java supports specify-
ing the position of a rectangle by its upper left corner, the
position of an oval by the upper left corner of its bounding
rectangle, the position of a string by its lower left corner and

While the Java coordinate representations are appropriate —

for some applications, the selection of a particular vertex of
a rectangle as its origin is somewhat arbitrary. JOTSA sup-
ports a centered object coordinate system in addition to the a) b)
standard Java coordinate system. Specifying objects by their
centers leads to a natural way of grouping objects together
can be represented by the coordinates of its center and the
relative positions of the vertices from the center. Moving the
polygon just requires changing the coordinates of the center
position. JOTSA also allows the position of one object to be
specified relative to that of another object so that objects can
be moved as a group.

the position of a polygon by the coordinates of the vertices.
and manipulating them as a group. For example, a polygon Figure 1: A collection of rectangles with a master circle.

In order to preserve a collection under scaling, JOTSA
defines two positions for each object. The position that an
object appears on the screen is calledhlisolute position.

Each object also has a pair of, y) coordinates called its
natural position which by default is the same as the abso-
lute position. When an object is a slave within a collection,
33 Size its natural position represents the position of the object rela-
Another attribute that can change along a path is the size of tive to the ma§ter. In the same way, each object has'absolute
and natural size parameters and other scalable attributes.

an object. Rectangles and ovals have a size parameter for
each dimension, while character strings and regular poly- Sgppose thgtthe master has absolute x-coordinatand
. L .- scaling factor in the x-direction,,,. If a slave has natural x-
gons have one such value. The size ofa stringis the p0|nt5|zecoordinatev scalina factor in the x-direction. . and nat-
of its font, and the size of a regular polygon is its radius. X s, Scaling o 5
In JOTSA, the size of an object on the screen is deter- ural siz€ (width) in the x-directiony;, then the apsolute X
mined by its size parameters and several scaling factors. Thecoordlnate Of. the slavey;, and the absolute width of the
: ! : . slave,W; are:
size parameters are integers representing a number of pixels:
The scaling factors are doubles to allow for smoothly chang-
ing the size of an object along its path without accumulating

roundoff error. A single scaling factor can be used to change

X, =X + smaxs

W, = 8,85 Ws

the size of several objects in a coordinated way. Notice that the scaling factor of the master affects both the
position and size of the slave, while the scaling factor of the
3.4 Collections slave affects only its size. Figure 1 shows why this scal-

ing method produces the desired result. When the master is
A JOTSA callection consists of a controlling object called scaled by a factor of 2.0 in the x-direction, the difference in
themaster and one or more additional objects calkbalves. the x-coordinates of the master and each of its slaves must

be doubled. Similarly, when the master is scaled by a factor were animated. The animation incorporates fading, overlaid
of 0.5 in the y-direction, the difference in the y-coordinates cues and linking of objects across views to improve visual
of the master and each of its slaves must be halved. Usuallypersistence. JOTSA allowed the animation to be adjacent to
the master object is just used to control the slaves and is notor to be superimposed upon the original movie.
displayed.
When two collections are merged into one, all of the slave L
objects in one collection are linked to the master of the other 4 TIMINg | ssues
collection and have their natural position and size modified
so that after the relinking, their absolute position and size In traditional animation paradigms, virtual time is monoton-
remain the same. The other master is then deleted. ically increasing and changes at a rate determined by the
When a master object is rotated, the position of its slaves amount of processing required at each time step or event and
are similarly rotated. Ifthe slave object s rotatable, the slave by the speed of the hardware that is running the program.
is also rotated about its center so that the rotation of the mas- Unlike other virtual-time systems, JOTSAS virtual time is
ter and slave behave as a rigid rotation of the two objects. directly linked to real time. The user specifies the speed of
Certain JOTSA objects (such as ovals) cannot be rotated. Invirtual time by a rate that connects virtual time to real time.
this case the position of the slave is rotated, butits orientation When the rate is 1.0, virtual time and real time run at the
stays fixed relative to the screen when the master is rotated.same rate. When the rate is less than one, virtual time runs
A more detailed description of JOTSA collections can be more slowly. For example, a rate of 0.5 indicates that virtual

found in [19]. time runs at half the speed of real time.
A JOTSA animation specifies how an object moves in
3.5 Multiple Independent Synchronized Views terms of virtual time. In the simplest case, an object moves

o) along a straight line at a constant rate. The movement is
JOTSA animation is done in one or more rectangular por- gpecified by the endpoints of the path and the length of time
tions of the screen called canvases. Each canvas is associ(in virtual time) it takes to traverse the path. The user is
ated with a set of objects which are to be displayed in that then guaranteed that the object will be done moving after the
canvas. JOTSA synchronizes the canvases so that all canyiven amount of virtual time. If the virtual time rate is 1.0,
vas displays correspond to the same virtual time. Becausene yser knows the real time at which the movement will be
of this synchronization, different canvases can show differ- complete. The rate at which the object moves on the screen

ent views of the same scene. is independent of both the speed of the hardware and how
]) much other processing (other objects moving or other pro-
3.6 Multiple Dependent Views cess activity) is taking place.

JOTSA supports panning and zooming. In fact, each canvas, Exact time execution comes \{vith a price. If the hardware
can have any number of scalable windows associated withiS {00 Slow to handle the processing that needs to be done, the
it. Each such window shows the same objects as the parentMotion may look jumpy. If this is unacceptable to the user,
canvas, but the view can be scaled (zoomed in or out) and Vi'tualtime can be slowed down. From the point-of-view of
translated (panned). While Java supports scaling of any im- the developgr of the an!matlon, the an|ma}t|on is wrlttgn in
age on the fly, rescaling an image of a moderate size takes O,{erms of motlor] in real time, and the algorithms are written
the order of a second on a moderately fast machine. This isin térm of real time. o _
at least an order of magnitude too slow for animationinreal ~ 1he basic assumptionin JOTSA animationsis thatthe dis-
time. JOTSA redraws the objects with the appropriate size in Play takes up most of the processing time and that the CPU
the scaled window instead of using the intrinsic Java scaling. c@n €asily keep up with the processing necessary to do ev-
As long as the number of objects is not too large (say, less erything other than the dlsplay.. Under these qrcumstances,
than 100), this approach is considerably faster than scaling JOTSA ensures that the non-display processing can be done
the image produced by drawing the objects. fast enough to keep up with the flow of virtual time by lim-
iting the display updates.
3.7 DataAnimation

4.1 When to Repaint
In addition to supporting simulation and animation of algo- P

rithms, JOTSA supports animation and visualization of data One difficulty with implementing time-appropriate anima-
with time critical features that must be preserved indepen- tionsin Java is the lack of user control of when the screen is
dent of the platform. The animation in [16] describes an ex- painted. Each Java canvas has its @amt method which
periment in which physicists made a videotape of an exper- cannot be called directly by the user. The user must request
iment. The videotape was digitized and the critical features that the run-time system calhint by executing the canvas'’s

repaint method. By giving epaint an optional parameter, vas inturnto fill the temporary image with objects based ona
the application can suggest the number of milliseconds be- common virtual time. When the image is complete, the mas-
fore thepaint occurs. Unfortunately this value is justa sug- terthread calls each canvas&paint. This approach is a mi-
gestion. nor modification of Method 2 that requires some additional
A possible repaint strategy is to try to maintain a reason- synchronization, sincpaint should not access the tempo-
able frame rate of about 30 frames a second. This is enoughrary image while it is being modified.
the ensure that the animation will look fairly smooth. How- Method 4: Each canvas steals the graphics context from
ever, this strategy would probably use up most of the CPU its paint method allowing it to paint directly without calling
capacity of a moderately fast machine. One of the design repaint. The master thread has all canvases paint serially in
goals of JOTSA is to be CPU-friendly: unless it is needed, a predetermined order using the same virtual time.
the CPU should be available to other processes. This goalis Method 5: Each canvas draws all objects to a temporary
notcompletely altruistic. Java is naturally threaded, and a 30 image rather than directly to the screen. When all objects
frames per second display rate would leave little processing have been drawn to the temporary images of all canvases, the
power for the non-display threads of the simulation. canvases draw that image to the screen. This minor modifi-
CPU friendliness implies that the display should not re- cation of Method 4 minimizes the delay between the updat-
quire much processing power when nothing is changing on ing of the screen for the various canvases.
the display. However, when objects are moving rapidly, it ~ Methods 2, 3, 4 and 5 have been implemented, and a study
is acceptable to use the full power of the CPU, especially if is being conducted to determine which produces the best re-
this rapid movement is short-lived. As long as an objectis sults.
already being displayed at each pixel position along its path,
redisplaying more often would notimprove the qualityofthe 43 Time Driven Simulation and Movies
display of this object. In a typical animation there will be
times when objects are moving and times when they are sta-In time driven simulation, virtual time is incremented by a
tionary. The optimal display rate is therefore dynamic. fixed amount at each time step. Similarly, movies are usually
Information about the path is part of the object’s class, so shown at a fixed frame rate. JOTSA supports the ability to
each object should determine its own redisplay rate. Hav- display at a given frame rate. If the animation for a given
ing each object cause a redisplay would be too inefficient so movie frame cannot be displayed in time for the next frame,
this is done by a master thread. The master thread gets thesome frames will be lost. If an animation time step cannot
recommended redisplay rate from each object and takes thebe displayed fast enough, the display of some time steps will
maximum rate within a certain predetermined interval. Each notappear, but the computation for each time step is done so
time an object is drawn to the screen, the optimal redisplay that the simulation is correct. It is assumed that most of the
rate for that object is calculated and delivered to the applet. processingis due to the display rather than the simulation and
the simulation processing can be done fast enough to keep up
4.2 How to Paint with the passage of virtual time.

Since JQTSA suppqrts multiple canvases, the issue of how 4.4 Synchronization and Events

to coordinate the paint methods of each canvas must be ad-

dressed. Here are five approaches for coordinating paintJava supports synchronization though the use of monitors.

methods: Each object is potentially a monitor, and the key weyd-
Method 1. The paint methods are completely indepen- chronized is used to include methods in the monitor. Instead

dent. Each canvas has a thread that periodically repaintsof condition variables, each monitor has its owait and

the screen at a rate determined by the objects displayed innotify methods. Notify events are not queued, antbify

that canvas. While simple to implement, this method does sent while the corresponding thread is not waiting is lost.

not provide any guarantees of synchronization between can- JOTSA supports synchronization through the display ob-

vases. jects. When an object is done moving it can notify a thread
Method 2: The paint methods are independent, that is, thatithas finished. JOTSA allows a thread to atomically start

each executes as a result gpaint request for thatcanvas, an object moving and wait for the object to reach its final po-

but all repaints use the same virtual time. A master thread sition. This capability allows an animation to avoid the race

determines when to repaint based on all objects displayed.conditionin which an object finishes its motion and attempts

All of the objects calculate their positions based on the same to notify the thread before the thread has begun waiting.

virtual time until the master thread calls thepaints again. In addition to the wait-notify mechanism implemented di-
Method 3: The canvas'paint method copies a tempo- rectly using the corresponding Java methods, JOTSA also

rary image to the screen. A master thread requests each carsupports sleeping for a given virtualtime and a queued event

list in which events are putin a queue and taken out using a
FIFO discipline. These features are convenientin more com-
plicated simulations in which events can be generated asyn-
chronously to the waiting thread while the waiting thread is
doing other work. Events can also be generated by an arbi-
trary number of JOTSA timers.

4.5 Scheduling

While JOTSA events and synchronization methods are not
difficult for the programmer familiar with thread program-
ming, experience with teaching advanced undergraduate
computer science majors to use Java indicates that pro-
gramming with threads is a difficult and time consuming

process for the inexperienced programmer. Java program-

ming (withoutthreads) is actually quite simple, and students
who have programmed before pick it up quickly. The Java
environment uses threads to wait for common events such

. Activate the object to start it moving.

When aJotsaAnimationObject is created, its initial po-
sition, a level number and a key are given. Téel number
determines the order in which objects are displayed and thus
which objects cover other objects. Tkey can be used at a
later time to destroy the object. The level and key can be
omitted and JOTSA will automatically choose unique ones.
An example of code to create an red oval that fits in a rectan-
gle 100 pixels wide and 50 pixels high is given below. The
oval is moved so that its center travels along a straight line
from the point (150, 200) to (250, 300) in 5000 milliseconds.

JotsaAnimationObject obj;

obj = new JotsaAnimationObject(150, 200, this);

obj.SetFillOval (100, 50, Color.red);

obj.SetPositionCentered();

obj.PathCreateAlongL ine(150, 200, 250, 300);

obj. TimesSet (5000);

Jotsal nsertObject(obj);

as keystrokes, mouse clicks or mouse movements, butthese opj Activate():;

are easy to use as the implementation is transparent to the = A complete applet illustrating this action is about a page
user. Such actions generate events that call an event handlefn |ength and can be found on the web [20]. A more com-

which the user overrides to handle these events. Thus,
although the Java programming environment is naturally
threaded, this aspect of Java is mostly hidden from the
programmer.

JOTSA provides a method for handling sequences of ob-
ject motions without the need to deal with thread program-

plicated example that illustrates most types of JOTSA ob-
jects can be foundin [21]. These two examples are described
in [18].

To move an object and wait for it to complete its motion
requires a thread, since a Java applet is not allowed to sleep.
JOTSA provides a class callddtsaWaitingT hread to sim-

ming. An object can be set to generate an event captured byplify this operation. The user creates a thread that extends

the standard JavaandleEvent handler. These new events
indicate completion of object movement. A second interface

this class, creates the object, and instead of activating the
object, executesiotsaWait(obj). This atomically starts the

under development is a scheduling class that schedules ob-gbject moving and suspends the thread until the object has

ject movements using a procedural interface.

5 A Simple Example

An applet which uses JOTSA is a class that extejats
saAnimationApplet. A minimal JOTSA applet must per-
form the following steps in itgnit method:
Call super.init();
Set up a layout which includdstsaDefaultCanvas
as one of its components.
Make sure the components have been laid out by
callingvalidate();
Call Jotsal nitlmages();

In the simplest case, to move an object requires the fol-
lowing steps:

. Create the object usingw JotsaAnimationObject;
Set the type of the object to be displayed.
Set the path the object is to move along.
Set the virtual time it takes to move the object.
Insert the object in the list of displayable objects.

completed its motion. It handles the synchronization neces-
sary to avoid the race condition in which the object finishes

its motion before the thread is suspended. An example illus-
trating this can be found in [22].

6 TheMotivating Example

JOTSA was motivated by the need to perform an animated
simulation of network protocols. The concept was proven by
implementing interactive animated simulations of the data
link layer protocols described in a standard computer net-
works text [29].

Figure 2 shows the initial display for a unidirectional ver-
sion of protocol 5 of [29], a sliding window protocol. The
windows of the sender and receiver are shown as well as
statistics for the sender and receiver. The user can pull up
a control window and adjust the various parameters such as
error rates and timeout values. At any time the simulation
can be paused and parameters can be adjusted. In this sim-
ulation, the sender and receiver are separate, independent
threads. Each thread implements its part of the protocol, and

the JOTSA environment does the event handling and the an-is accessed, it can take a while if the network connection

imation. The code for each thread closely matches the net-is slow. The JOTSA code is about 150K bytes in size and

work algorithm. The user controls the animation by making so is the application in this example. The first time it is

packets available to the sender from the network layer and run, 300K bytes must be downloaded. JOTSA need only be

by controlling the type of errors that occur. downloaded once, and additional JOTSA applets can be run
Figure 3 shows a Snapshot of the d|3p|ay after a group of without the JOTSA part being downloaded again. This ex-

frames has been sent. As each frame is sent, a JOTSA timefmple application is quite large, and a typical JOTSA applet

is set to generate a timeout event for the sender thread. Themight only be about 10-20K bytes in size.

simulation does not determine at this pointwhether the trans- ~ While the audio description of the scenarios can greatly

mission will be successful or not. The error mechanism can add to their usefulness, the sound files must be downloaded

be independent of the transmission, and a frame or acknowl-0ver the network. A typical scenario might require 10 to 20

edgment can be destroyed at any time due to a statistically sound files of about 20K bytes each. Thus the sound data

driven automatic error mechanism or by the user clicking may far exceed all of the rest of the network traffic of a par-

on a frame to destroy it while in transit. The transmission ticular application.

of the frame is represented by a JOTSA object in motion.

When the motion finishes, the object generates an event tha%

notifies the receiver thread of a frame arrival. The receiver Performance I ssues

then generates an acknowledgment frame. If the acknowl-

edgment frame arrives, it generates a frame arrival event for

the sender.

Since event generation can be tied to the motion of a
JOTSA object, the simulation closely parallels the actual iting factor to the speed.

transmission of dat'a.] The main consequence of slow platforms on JOTSA ap-
For each of the six protocols that have beenllmplemented, plications is a jerky display.When a moving object cannot
a number of scenarios have been developed illustrating fea-,q displayed at almost every pixel position along its path, its

tures of that protocol. For example, in Protocol 5 the receiver ,otion does not appear to be smooth. Most JOTSA appli-
has a window of size one. This means that frames cannot be;ations will have a slider to control the rate of virtual time

accepted out of order. If aframe is lost, as is frame number 3 54 the user can slow down the flow of time if the display
in Figure 3, the receiver must discard all subsequent framesquamy is not sufficient. In the example shown in Figures 2
and all frames after the lost one must be resent. Clicking gnq 3. such a slider is brought up by pushing@uatrols

on theCommentary button will bring up a running dialog button.

box containing a commentary which is synchronized with The time it takes JOTSA to display a frame depends on a
the running of the protocol. Optionally, an audio description - nmper of factors including the size of the window to be dis-
is availab!e. The audio commentary is particularly effe.ctive. played and the number and types of objects to be displayed.
because it allows the user’s eyes to focus on the main ani-The time for a single update is almost independent of the mo-
mation display. tion of the objects, but the speed of movement determines
A drawback of the Java security model is that it only al- how often the display should ideally be updated.
lows applets to read files from the server from whichtheap- ~ JOTSA allows the display to be broken up into several
pletwas obtained. Forexample, ifthe appletresides ona ma-rectangular pieces, called canvases. The display of the indi-
chine callecappletserver, and a user is running a browser on - vidual canvases can be either synchronous or independent.
a machine calledppletclient, then the applet can read files |n the example in Figure 3, all of the moving objects are in
stored orappletserver, but it cannot read files stored ap- a rectangular region between the sender and receiver boxes.
pletclient. The scenarios are configured by files which are This small area (about 150 by 150 out of 630 by 325) is a
read in by the applet. Generally, the user will not have di- separate canvas and is the only part that needs to be updated
rect access to thappletserver machine. The Java security often. The other six canvases only need to be updated when

model thus prevents the user from Writing his own scenar- an event occurs, typ|ca||y less than once a second.
ios. To enable this, the user would have to have aweb server The maximum frame rate for a simple JOTSA applet on

and load the JOTSA applets directly on thisweb server. This different p|atforms is shown in Figures 4 and 5. In addi-
would defeat some of the main advantages of using the Web.tion to processor type and speed1 the frame rate depends on
The entire application and the JOTSA environment must a number of factors such as the particular Java implemen-
be loaded onto the client machine before the applet can betation, the operating system, the display hardware and the
run. While this is automatically done when the web page amount of memory on the target machine. The first of these

Java performance varies considerably between platforms.
Standard Java applications will run more slowly under a
slower implementation, but JOTSA applications run at the
same speed on all platforms as long as the display is the lim-

=] Simulation 1: Prototcol 5: Pipelining
send List) sender receiver Received List
Frame Seq. Tries Frame Seq.
Frames Sent: 0 Frames Received: 0
Idle Waiting for Frame
Timeouts(7} In: 5.8
. Reject
unavailable
Protocal & — | Automatic — I Sound off | Crestroy | Start I Clear | Hide |
Scenario 1 | Scenario 2 I % | Caontrol I Commentary | Gantt |
|

Figure 2: The initial display after protocol 5 is chosen.

r‘ﬂ Simulation 1: Prototcol 5: Pipelining: Scenario 1 i
send List) sender receiver Received List
Frame Seq. Tries Frame Seq.
0 0 1 Frames Sent: 7 Frames Received: 0
1 1
2 0 1 Waiting for Ack # # 1 # I # Waiting for Frame
3 1 1
4 0 1
5 1 T Timeouts(7) In: 7.3
3 i} 1
. Reject
unavailable
Protocol 5 | Automatic —i I Sound Off | Destroy i | Stap I Clear | Hide |
Scenario 1 | Scenario 2 I | -a | Caontrol I Commentary | Gantt |

=] Protocol Commentary

Protocol 5 allows pipelining. Inthese examples, the maximum sequence number is 7 which
allows for 8 sequence numbers and 7 outstanding frames. 7 frames can be sent before the
sender is blocked. The receiver has a window size of 1, meaning that it cannot accept frames
out of arder. When it receives a frame, the receiver sends and ack for the last frame it has
accepted. When the sender receives an ack for frames it has buffered, it frees those buffers and
additional frames can be sent.

Protocol 5 scenario 1 sends 7 frames, Itis assumed that the sender has only 7 frames to send, Frame 3 is lost and frames
3,4, 5, and 6 have to be resent when frame 3 times out, The ack for frame 4 is lost but it doesn't matter since the ack for
5 is received before frame 4 times out,

Frotocal 5, Scenario 1 Sender

Protocal 5, Scenario 1 Recejver

1. 5end frames 0-6

&, Frame 3 gets lost

15, Receive acks

26, send frames 3-6 again
30, Receive acks

3. 5end acks for frames 0,1, and 2
12.Keep sending ack for 2 as wrong frames came in
26, Receive frames 3-6 correctly, send acks

Hide Protocol | Hi

de Send | Hide Recaive |

Hide General | Test |

Close

Figure 3: A snapshot of the display and a commentary dialog after several frames have been sent. Frame 3 has been lost.

Number of Objects
Platform 1 2| 4| 8|16|32 |64 (128 (256 |512 {1024
Sparc LX 50 Mhz 23| 22|19 |16 |15 |13 |11 6 4 2 1
Sparc 4 110 Mhz 50| 4947143362819 11] 9 6 3
Sparc 20 60 Mhz 102] 9589 (80 [64 (59 [39 [23 |15 [8 5
Sparc Ultra 167 Mhz| 158143 |95 |93 [61 [34 [40 [32 | 18 | 11 9
486 66 MHz Linux 28| 26 |25|21 |19 |14 | 9 5 3|15]| 0.7
Pent. 100 MHz LinuY 78| 82|74 (64 |54 [37 |25 | 16 | 12 7 3
Pent. Pro 200Win95| 18| 18|18 (18 |18 (18 |18 | 14 7 3 3
Pent. Pro 200NT 93] 94]94[90]93[00[89 [58 [40[26] 14

Figure 4: Atable showing maximum frame rates when using
a small window size of 100 by 100 on different platforms.

Number of Objects
Platform 1| 2| 4| 8|16|32|64|128 (256 [512 |1024
Sparc LX 50 Mhz 9l10] 9] 9] 8] 7] 8] 5] 3] 2 1
Sparc 4 110 Mhz 13 (14 ({13 (13 (11 (11| 9 6 6 5 3
Sparc 20 60 Mhz 25(25(25(25(25 (25 (21 | 19 | 13 | 10 6
Sparc Ultra 167 Mhz [25|26 |25 |27 {28 [26 {17 | 16 | 11 9 7
486 66 MHz Linux 16 (17 (15 (14 (14| 9 | 7 4 3|14 | 0.7
Pent. 100 MHz Linux 15|15 |14 |13 |13 |11 |10 8 | 10 5 3
Pent. Pro 200 Win95| 18|18 {18 |18 |18 |17 |15 9 6 3 1
Pent. Pro 200 NT 1411411511514 |13 (13 | 12 | 11 | 10 8

Figure 5: A table showing maximum frame rates when using
a large window size of 800 by 800 on different platforms.

figures shows the maximum frame rate for a small window

8 Discussion

Prior to the introduction of Java, many web-based anima-
tions used a model of execution based on the X Window Sys-
tem [9]. In this model the software runs on the remote ma-
chine (the X client), and the display appears on the local ma-
chine (the X server). There are three major disadvantages to
this model. The computing burden is on the remote machine
requiring the software provider to supply sufficient comput-
ing power for all users. Secondly, the system puts a heavy
load on the network while the programs are running, making
the speed of the animation dependent on the network traffic.
Thirdly, while X servers can be obtained for most systems,
they are not normally installed on the most ubiquitous ma-
chines, those running Microsoft operating systems.

The Internet community has focused on Java as the lan-
guage for the web. Java holds the promise of platform inde-
pendence based on a model of compile once, run anywhere.
To some extent this has been already achieved with the core
ofthe Java language. Inthe Java model, the program is com-
piled into an intermediate form and stored on the remote ma-
chine (the server). Itis downloaded to the local machine (the
client) when it is accessed. The Java program is run on the
local machine, usually with an interpreter. Once the pro-
gram has been downloaded there is no longer any demand
put on either the remote machine or the network. Since the
Java program is interpreted (or compiled on the fly at run
time), the same program will run on any system. However,
many problems still exist before true platform independence

of size 100 by 100 pixels, and the second one is for a large IS achieved.

window of size 800 by 800. The larger window represents

While the Java Application Window Toolkit (AWT) has

64 times as many pixels as the smaller one. In most cases fothe same features on all platforms, the look and feel varies.
the small window, the number of objects is the main deter- The differences may actually be desirable under some cir-
mining factor on the display rate. For the larger window, the cumstances, because the Java environmentbehaves in a way
number of objects does not significantly affect the display thatis familiarto the user on a particular platform. However,
rate until it exceeds some threshold. certain aspects of this variability make it difficult to achieve
a satisfactory appearance on all platforms.

The Pentium Pro platform is an exception to this. While Fonts pose a particular problem when there is a need to
it is faster than most of the other systems as shown by place text accurately among other displayed objects. The
its NT performance, the Pentium Pro under Windows 95 size and shape of characters is different on different plat-
has a maximum frame rate of less than 20 frames per sec-forms, since Java uses the text capabilities of the underly-

ond, even for one object in a small window. This sur-
prising result was traced to the Java time functi®ys-
tem.currentTimeMillis(). This function is supposed to re-
turn the system time in milliseconds, and JOTSA uses it to

ing window environment. Consequently, the same character
string will take up a different amount of space when viewed
ondifferent platforms. In Java, the width of a box s specified
by a number of pixels, while the width of a string is specified

compute when to issue the next display request. Consecutiveby the font style and size. A Java program can determine the

calls to this function should return values which differ by 0 or

width in pixels of a given string in a given font, but there is

1, and this behavior was confirmed on the Sun systems andno convenient method for ensuring that a string will fitinside

on the Intel systems running Linux. Under NT differences
were either O or 10. However, under Windows 95 the non-

the box boundaries, other than by trial and error.
Sound support in Java is rather rudimentary. While au-

zero differences are either 50 or 60. This coarse granularity dio files can be played, audio control is limited. Sound clips

of time prohibits JOTSA from making the precise calcula-
tions needed for higher frame rates.

can be started and stopped, but there is no convenient way
to tell when a sound clip is finished. This makes it difficult

to properly sequence sound clips. A solution to this problem
has been promised in the upcoming Java Media Toolkit.
Another more important problem for animation is that the

[13] B. Myers, “Taxonomies of visual programming and pro-
gram visualization,J. of Visual Languagesand Comput-
ing, 1, pp. 97-123, 1990.

speed of the hardware and the efficiency of the Java runtime[14] A. A. B. Pritsker, and J. J. O'Reilly, “AweSim: The inte-

environment affect the speed at which Java programs run.

Unless care is taken, motion which is very slow on one ma-
chine will be very fast on another. JOTSA addresses this
aspect of platform-independent web-based animation. It is
particularly difficultin Java, since the user does not have di-
rect control of the repainting of the display. JOTSA has been
shown to be a powerful tool for web-based simulation and

animation of algorithms and physical processes. It has also

grated simulation systemProc. 1996 Winter Smulation
Conference, pp. 481-484, 1996.

D. M. Profozichand D. T. Sturrock, “Introductionto SIM-
MAN/Cinema,” Proc. 1995 Winter Smulation Confer-
ence, pp. 515-518, 1995.

K. A. Robbins and S. RobbingJsing exact time ani-
mation to show nonperiodicity, UTSA Computer Science
Technical Report, CS 97-4, 1997.

[15]

[16]

been used for animation of data in systems where exact time[17] S. Robbins, A microprogramming animation, UTSA

is a critical feature.

References

[1] R. S. Anir, J. A. Miller and Z. Zhang, “Java-based query
driven simulation environmentProc. 1996 Winter Sm-
ulation Conference, pp. 786—793, 1996.

K. Arnold and J. GoslingThe Java Programming Lan-
guage, Addison-Wesley, 1996.

J. E. Baker, I. F. Cruz, G. Liotta and R. Tamassia, “Algo-
rithm animation over the world wide web,”
http://www.cs.brown.edu/people/jib/Paper mocha.ps.

J. Banks, S. Carson, and J. N. $3etting Started with
GPSSH, Wolverine Software Corporation, Annandale,
Va, 1989.

M. H. Brown, Algorithm Animation, MIT Press, Cam-
bridge, 1988.

S. Bryson and Sandy Johan, “Time management, simul-
tanaeity and time-critical computation in interactive un-
steady visualization environment&fsualization 96, pp.
255-261, 1996.

[7] A.H.Buss andK. A. Stork, “Discrete eventsimulation on
the world wide web using Javaptroc. 1996 Winter Sm-
ulation Conference, pp. 780—785, 1996.

S. W. Cox, “GPSS world: A brief preview,Proc. 1991
Winter Smulation Conference, pp. 59-91, 1991.

E. Cutler, D. Hilly and T O’Reilly,The X Window System
in a Nutshell, 2nd edition, O'Reilly and Associates, Inc,
1992.

N. J. Earle and J. O. Henriksen, “The power and perfor-
mance of PROOF animatiortoc. 1995 Wnter Smula-
tion Conference, pp. 494-501, 1995.

M. Folk and R. E. McGrath, “The horizon projecgéd-
eral Webmasters Workshop, Aug. 7, 1996.
http://hdf.ncsa.uiuc.edu/horizon/Webmaster.7.Aug.96/.

T. A. Funkhouserand C. H. Sequin, “Adaptive display al-
gorithm for interactive frame rates during visualization of
complex environments,Computer Graphics: Proceed-
ings of SGGRAPH 93, pp. 247-254, 1993.

(2]
(3]

[4]

[5]
(6]

(8]
9]

[10]

[11]

[12]

Computer Science Technical Report, CS 95-10, 1995.
http://vip.cs.utsa.edu/per sonnel/srtechreps.html.

S. RobbinsA JOTSA example, UTSA Computer Science
Technical Report, CS 96-13, 1997.
http://vip.cs.utsa.edu/java/jotsahome/.

S. RobbinsJOTSA coallections, UTSA Computer Science
Technical Report, CS 97-5, 1997.
http://vip.cs.utsa.edu/java/jotsahome/.

(18]

[19]

[20] S. Robbins, “A simple applet which moves an oval along
aline,”

http://vip.cs.utsa.edu/java/jotsahome/.

S. Robbins, “An applet illustrating many JOTSA fea-
tures,”
http://vip.cs.utsa.edu/java/jotsahome/.

S. Robbins, “An example illustrating splits and merges,”
http://vip.cs.utsa.edu/java/jotsahome/.

E. C. Russel, “SIMSCRIPT Il and SIMGRAPHICS tuto-
rial,” Proc. 1993 Winter Smulation Conference, pp. 223—
227,1993.

[24] T.J. SchriberSmulation using GPSS, John Wiley, New
York, 1974,

[25] J. T. Stasko, “The path-transition paradigm: A practi-
cal methodology for adding animation to program inter-
faces,”J. of Visual Languages and Computing, 1, pp.
213-236, 1990.

[26] J. T. Stasko, “Animating algorithms with XTANGO,”
S GACT News, 23(2) pp. 67—71, 1992,

[27] J.T. Stasko and E. Kraemer, “A methodology for building
application-specific visualizations of parallel programs,”
J. Parallel and Distr. Computing, 18(2) pp. 248-264,
1993.

[28] J. T. Stasko and D. S. McCrickard, “Real clock time an-
imation support for developing software visualizations,”
Australian Computer Journal, 27(3) pp.118-128, 1995.

[29] A. S. TanenbaumComputer Networks, Prentice Hall,
Third Edition, 1996.

[30] “The horizonimage data browser,”
http:/fimagelib.ncsa.uiuc.edu/imagelib/Horizon/.

[21]

[22]

[23]

