
Ethercom: A study of audio processes and synchronization

Richard Rybacki Kay A. Robbins Steven Robbins

Division of Mathematics, Computer Science, and Statistics

The University of m ‘ n A ‘ “ -Lexas at ban fintonlo

Abstract — Ethercom is a project which introduces many
s.spects of network communication, process synchronization,
and scheduling at a level suitable for an undergraduate e op-
erating systems or networks course. The project requires a
Unix workstation equipped with a microphone and speaker.
The project is developed in stages starting from simple 1/0

to the audio device. The final development is two-way corn.

munication over a network using lightweight processes and

asynchronous 1/0. When they have completed the project,

students can sit at their workstations and converse with

counterparts at remote sites. Variations and enhancements

for the basic project are suggested including a monitor im-

plement ation of communication. Libraries of simplified rou-

tines for 1/0 and network communication are also available

via anonymous ftp.

1 Introduction
Continuous media applications (e.g. audio and video) are

becoming feasible as network bandwidth and workstation

power increase. The inclusion of an audio device on many

popular workstations provides an opportunity for the devel-

opment of a variety of interesting projects in operating sys-

tems and networks courses. These projects are not only of

current interest, but they allow students to explore a range

of concepts which are important to their understanding of

the modern systems environment. The projects which are

proposed in the following discussion explore audio technol-

ogy, network technology, process scheduling, signal handling,
synchronization and lightweight processes.

The basic project consists of the development of an Eth-

ernet intercom system (Et hercom). When they have com-

pleted the final stage of the project, students are able to

converse with counterparts at remote sites. The approach

we describe allows the students to experiment with differ-

ent system calls without writing large amounts of code. The

project is realistic enough to engender enthusiasm, and the
audio aspect of the project provides instant feedback.

2 Project Overview
The goal of the project is to develop a system for full duplex
voice communication over a network. The project is devel-

oped in three stages. Each stage covers some basic concepts.

Additional topics and enhancements are also suggested.

Permission to copy without fse all or part of this material is

granted provided that the copies ara not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

ACM-24thCSE-2/93 -lN, USA
n 7993 ACM 0.89791 -566 -6/93 /0002 /0218 . ..$1 .50

1.

2.

3.

3
The

Reading from and writing to the audio device. (Basic

concepts: devices and files, 1/0 control, read and write.

Additional topics: filtering, thresholding, adjusting of

volume.)

Sending audio over the network. (Basic concepts: net-

work communication, client-server model, Additional

topics: out-of-band control, TCP and UDP protocols,

buffering.)

Developing an audio system for two-way communica-

tion. (Basic concepts: non-blocking 1/0, signal han-
dling. Additional topics: lightweight processes, process
scheduling, monitors, producer-consumer synchroniza-
tion.)

System Information
project will be described specifically for Sun systems,

howe;er-many other Unix systems (such as Next and SGI)

have similar facilities. The programa were written for Sun

SparcStation and SLC workstations running SunOS version

4.1.2. These systems are equipped with an AM79C30A dig-

ital subscriber controller chip which performs digital to ana-

log and analog to digital conversion. The signal is sampled

8000 times per second with 12-bit precision. The samples are

then compressed to 8-bits using a ~-law encoding scheme. In-

expensive general purpose microphones (Radio Shack #33-

1067) were purchased to provide the audio input.

A Audio 1/0
In the first assignment, students are asked to read from and

write to the audio device. A discussion of files and devices

fits very nicely into this assignment. A library of routines

to access the audio device is shown in Figure 1. The audio

device is represented by the file descriptor fd. It is consid-

ered to be an object which has the operations open, close,

read, and write. The trade-off between uniform treatment

of devices and access to device-specific control can also be

illustrated. Only one process can open the audio device at

a time, and the open in open_audio_device will hang if the

device has already been opened unless the O.NDELAYflag is
used. (The ioctl is called with I_ SETSIG in order to cause a
SIGPOLL signal to be generated when the device represented
by f d is ready for input. It is used later when lightweight

process library is introduced and is not necessary for basic

communication.)

A first program to access the audio device is given in

Figure 2. The program repeatedly reads a block of up to

1024 bytes of data and echoes it to the speaker. The per-

formance is somewhat sensitive to the size of the blocks

(AUDIOBUFSIZE) that are read. For the Sun system, 111Z4

218

bytes seems to be the smallest chunk transferred from the

audio device to the kernel. Delay seems to be minimized with

this selection of block size. Most students picked a much

larger block size in their initial experiments and ran into

timing problems when trying to maintain continuous speech

during transfer across the network. The timing problems

were interesting in their own right, and many experiments

on the effects of buffering and network protocols can be per-

formed.

One of the difficulties which immediately becomes appar-

ent with the microphone assignment is that once opened, the

audio device is sampled until it is closed. Thk continuous

sampling produces a prohibitive amount of data for trans-

mission across the network. A filter should be provided to

throw away audio packets which contain no voice. A sim-

ple method of filtering is to convert the y-law data to linear

scale and reject packets which fall below a threshold.

Possible enhancements to the program at this point

include providing a calibration routine which allows the

threshold for voice detection to be adjusted based on the

current value of the ambient room noise. More sophisti-

cated filtering algorithms can also be explored. Another

enhancement is to provide a window which dynamically dis-

plays the number of packets per second which have voice

data. Students can also add signal handling to the simple

routine in Figure 2 so that a summary of packets read and

packets transmitted can be displayed when the program is

interrupted. An audio tool is provided with the Sun operat-

ing system, and one can easily add code to fork and exec an

audio tool to control the volume.

#include <stdio .h>
#include <f cntl. h>
#include <stropts. h>
#define DEVICE “/dev/audio”
static int fd = -1; /+ audio file descriptor */

int open-audio-deviceo

{ /* Open audio. Return O if successful */
if ((fd = open (DEVICE, 0JDELA% I O-RDWR)) < O)

return (-1);

/* used later to enable SIGPOLL */
if (ioctl(fd, IJ3ETSIG, S-IMPUT) < O)

return (-1);
return(0) ;

}

void close-audio-deviceo

{ /* Close the audio device. */

close (fd) ;

}

int write-audio-device (buffer, length)
char *buffer;

int length;

{ /e Write length bytes of buffer to audio. */

return (write(fd, buffer, length)) ;

}

int read-audio-device (buff er, maxcnt)

char *buff e r;
int maxcnt;
{/* Read up to maxcnt bytes from audio into buffer. */

retmrn(re. ad(fd , buffer , maxcnt)) :

}

Figure 1: The audio device object and its basic operations.

#include <stdio .h>
#define ETHERCOH-PORT 31270
#define AUDIO-BUFSIZE 1024
maino

{/* Read from microphone and echo to speaker

until interrupted or error. */
unsigned char buff er [AUDI D-BUFSI ZE];

int bytes;

if (open-audio-device () < O) {
perror(’’open-audio-device”) ;
exit(1) ;

}
while (1) {

if ((bytes = read-audio-device

(buff er, sizeof (buffer)
perror(’’read-audio-device”) ;
exit(1) ;

}
if (writ e-audio_ device (buff er, bytes

perror(’’write_audio-device”) ;

exit(1) ;

}
}

}

)< 0){

<0){

Figure 2: Basic program to access the audio device.

5 Network Transmission
The second stage of the project is the establishment of one-

way communication over a network (in our case Ethernet)

using either sockets or TLI (transport layer interface). Com-

munication follows a client-server model. A server program

runs on a remote host, and a client program on the local

machine seeks to establish communication. Communication

takes place through ports which are associated with and ac-

cessed by ordinary file descriptors. The server opens a file

descriptor and listens for connection requests on port num-

ber A which has been agreed upon in advance as shown in

Figure 3. The client requests a connection to the server

through port A. When the connection is made, the server

transfers the client to another port for the session so that

the server can continue to monitor port A fcm other calls as

shown in Figure 4. This is analogous to operator assisted

telephones at hotel switchboards. A patron calls the oper-

ator and requests to be connected to a certain room. The

operator makes the connection (with patch cords in the old

days) to the requested hotel room and steps out of the con-

versation.

One of the difficulties with assigning a project involving

network communication in an undergraduate operating sys-

tems class is that there are a lot of details which are pe-

ripheral to the main content of the course. For this rea-

son, we have provided a library of simplified routines which

we call UICI (Universal Internet Communici~tion Interface).

We have implemented these routines (u-clpen, u-listen,

u-connect, u-close, u-read, u.urite, and u-error) using

sockets and using TLI. The details of the implementation

can be discussed in the classroom, and students in a net-

works course can be required to replace UI C1[with their own

routines.

A client and server which do one way communication us-

ing these routines are shown in Figures 5 and 6. The client

routine in Figure 5 is relatively simple. Once a connection

has been established, the client simply reads from the audio

219

device and transmits the packet across the network. The

client program is called with a command line argument spec-

ifying the name of the host machine on which the server

is running. The server in Figure 6 opens well-known port

ETHERCOKPORT and listens for connections through file de-

scriptor fd. When a connection is established, communi-

cation will take place through the port represented by file

descriptor newfd. When either the client or the server is

interrupted, the network connection is broken. The other

participant detects that a network read or write has failed

and terminates.

In a normal client-server program, the server would fork

a child to handle the communication. The server could then

resume listening for other connection requests. However,

since only one process can open the audio device at a time,

the server performs the communication directly.

q’”-”””””””-””
Figure 3: Client server model — connection request

rener) Omit

B

Figure 4: Client server model — connection established

6 Two-way Communication
The core of the project is the design of a two-way communi-

cation system. The program should monitor an audio input

device and an input channel from a remote connection. If a

packet comes in from the audio device, it should be filtered.

If the packet data exceeds a voice transmission threshold,

the packet should be transmitted to the remote socket. If

a packet comes from the remote connection, it should be

written to the audio output device.

The simplest approach is to use the Unix select or to use

polling with nonblocking 1/0. However, the implementation

discussed here uses the lightweight process library (LWP)

provided with SunOS 4.1.2. We define a lightweight pro-

cess as an independent thread of control within an address

space. Lightweight processes provide a transparent way of

switching among paths of control without the overhead of

context switching. We made the LWP choice because of

the increasing move towards operating systems with fully-

preemptive kernels running on multiprocessor systems. Most

future operating systems will probably provide kernel sup-

port for lightweight processes along with facilities for user-

scheduling of threads and real-time capabilities necessary for

the effective handling of continuous media applications[l].

#include <stdio .h>

#define ETHERCOH.PORT 31270

#define AUDIO.BUFSIZS 1024

main (argc, argv)
int argc;
char **argv;
{/* Read from audio device and send to remote server. */

int fd, bytes;

unsigned char buff er [AUDI O-BUFSIZE];
if (argc != 2) {/* server host is command line arg */

fprintf (stderr, ,,Usage: %S <host >\n”, arsv[ol);

exit(1) ;

}
/* request a connection with the remote server */

if ((fd = u-connect (ETHERCOH-PORT, argv[il)) < O) {
u-error (’’u-connect”) ;
exit(1) ;

}
/* get ready to send audio */

if (open-audio-deviceo < O) {
perror($’open-audio-device”) ;
exit(1) ;

}
while (1) {

if ((bytes = read_ audio_ device

(buff er, AUDIO-BUFSIZE)) <= O) {
perror(’’read-audio-device”) ;

exit(1) ;

}
1* send audio to remote server */

if (u_write(fd, buffer, bytes) <= O) {
u-error (’’u-write”) ;

exit(1) ;

}
}

}
Figure 5: Audio device reader client for one-way network

communication using UICI.

#include <stdio. h>

#define ETHERCOH-PORT 31270
#define AUDIO-BUFSIZE 1024
maino

{ /* Receive from network and write to speaker. */
int fd, newfd, bytes;

unsigned char buff er [AUDIO. BUFSIZE] ;

/* open the well-known port for listening */

if ((fd = u-open (ETHERCOH_PORT)) < O) {
u-error (’’u-open”) ;
exit(1) ;

}
/* listen for a connection */

if ((newfd = uJisten(fd)) < O) {

u_errOr(’’uJist en”) ;
exit(1) ;

}
if (open-audio-deviceo < O) {

p.srror(’’open-audio-device+’) ;
exit(1) ;

(1) {
((bytes =

u-re.ad(newfd, buffer, AVDIO_BUFSIZE)) <~ O) {

u-error (’’unread”);
exit(1) ;

(writ e-audio-device (buff er, bytes) <= O) {
perror(’’write-audio-device”) ;

exit(i) ;

Figure 6: Audio device writer server for one-way network

communication using UICI.

220

#include <lwp/lwp .h>
Xinclude Cstdio .h>
#define AUOIO.BUFSIZE 1024
*define THREAD-STACKJ31ZS 1000
static thread-t reader-t;

static thread-t writer-t;

static int socket-fd;

static void shutdowno
{ /* Close devices and shutdown processes. ●/

close (socket-fd);
close-audio-deviceo ;
lwp-destroy(reader-t);
lwp-destroy(writer-t);

}
void readero
{ /e /dev/audio -> network (fd) until error. e/

static char buffer [AODIO-BUFSIZE] ;

int bytes;

while (1) {

if ((bytes = read-audio-device
(buffer, AUDIO-BUFSIZE)) <X O) {

perror(’’read-audio-device”) ;

shutdown ();

}
if (u-writ e(socket-f d, buff er, bytes) <= O) {

u-error (’’u-write”) ;
shutdowno;

}
}

}
void writero
{/.

}
int

int
{/.

}

1

socket -> /dev/audio until error. */

int bytes;
static char buffer [AUDIO-BUFSIZE] ;

while (1) {

if ((bytes = u-read

(socket-fd, buffer, AUDIO-BUFSIZE)) <= 0) {
u-error (’’u-read”) ;

shutdown ();

}
if (writ e-audio-device (buffer, bytes) <= O) {

perror(’’write-audio-device’”) ;
shutdouno;

}
}

threads-init (f d)

fd ;
Initialize the reader and writer LUP’s. ●/

lwp-setstkcache (THREAD_ sTACK-S123, 2);

wcket-fd = fd;
lup-create (&reader_t ,reader,

HIEPRIO,0 ,lwp-nemtko ,0) ;
lup-create(&vriter_t ,Irriter,

HIUPRIO,0 ,lwp-newstko ,0) ;

Figure 7: reader reads from the audio device and outputs

to the network. writer reads from the network and writes

to the audio device.

Two lightweight processes will be introduced—reader and

writ er. The reader routine reads from the audio device and

outputs to the network, while the m-it er routine reads from

the network and writes to the audio device. The reader

and writ er lightweight processes are shown in Figure 7.

They are activated by the threads-init routine. Active

threads attached tothe reader and writer routines arecre-

ated by calls to lwp-create. Once a thread is created, it

is referenced by a thread id which haa type Ithread.t. The

lupsetstkcache routine is called to allocate two stacks of

1000 bytes each. The lvpneustk () gets a free stack when

the lvp-create call creates a lightweight processes. These

stacks are returned to the stack pool when the lightweight

processes are destroyed. On the first call to the lightweight

process library, the main program becomes a thread running

at highest priority. The threads that it creates are blocked

until that thread exits or lowers its priority.

Server and client programs implemented with lightweight

processes are shown in Figures 8 and 9 respectively. The

client and server are symmetric in the sense that they both

run reader and uriter lightweight processes. The reader

lightweight process of the client is communicating with the

writer lightweight process of the server.

#include <stdio .h>

#define ETHERCOKPORT 31270

main ()
{/* Server for two-way commun. using LUP */

int fd;
int nevfd;

if ((f d = u-open (ETHERcoM-POIt’O) < o) <
u-error (’’u-open”) ;
exit(1) ;

}
if ((newfd = u-listen(fd)) < 0) {

u-error (”u-listen”);
exit(l);

}
if (open-audio-device () < O) {

perror(’’open-audio-device”);
exit(i) ;

}
threads-init (neefd);

}

Figure 8: Server for two-way communication using LWPS.

Zinclude <stdio. h>

#define ETHERCOH-PORT 31270

main (argc, argv)

int argc;
char **argv;
{/* Client for two-way commun. using LUP */

int fd;

if (argc != 2) {

fprintf (stderr, “Usage: Xs <host>\n”, argv [01) ;

exit(i) ;

}
if ((fd = u-connect (ETHERCOH-PORT, argv [11)) < 0) {

u-error (’’u-connect”) ;
exit(1) ;

}
if (open-audio-device () < 0) {

perror(’’open-audio-device”) ;
exit(1) ;

}
threads_init (fd) :

}

Figure 9: Client for two-way communication using LWPS.

221

The lightweight process implementation of two-way com-

munication illustrates the elegance and simplicity of imple-

menting parallel processes using threads. There are many

possible extensions to this part of the project. One exten-

sion is to implement the communication of the reader as two

threads. One thread reads the audio device and deposits a

block in a ring buffer. A second thread removes a block from

the ring buffer, tests it for the presence of voice and forwards

it on the network if appropriate.

Producer-consumer and synchronization implementations

are typically difficult to debug, and the audio aspect of this

assignment provides an audible indication of the effective-

ness of the algorithm. A deadlock free and efficient algorithm

is necessary for smooth and continuous speech. In addition,

the thread library provides a mechanism for the user to write

a thread scheduler. The student can experiment with differ-

ent scheduling constructs and hear the effectiveness of the

scheduling discipline selected. When ordinary semaphores

are used, students with buggy programs can fill up the sys-

tem semaphore table causing all other processes which use

semaphores to block. If the students don’t clean up, their

semaphores can persist until a reboot. The LWP library

primitives are implemented at the user level, so they only

persist as long w the program does—a definite advantage in

teaching synchronization to inexperienced students.

‘7 Discussion

The Ethernet intercom project was initially given to a grad-

uate operating system class with instructions to implement

the basic system and then to enhance it in some way. Stu-

dents pursued many different aspects of the project. One

student did extensive voice analysis and developed sophisti-

cated threshold and calibration techniques. Another student

experimented with conference calling and combining incom-

ing audio signals from several remote sources. SeveraJ stu-

dents installed their intercom daemons on the machines of

friends at other universities and tried remote communica-

tion.

The first undergraduate class to work on Ethercom im-

plemented the basic t we-way communication using select.

The class then designed (in class) and implemented a con-

ference calling system using lightweight processes. It was

possible to introduce several advanced topics on group com-

munication in the discussion and subsequent design process.

A number of problems were encountered in the first imple-

ment ation of the Et hercom project. The Sun TLI interface

does not seem to be completely debugged. Students who

were not careful about the way that TLI calls were inter-

rupted by signal handlers could cause the remote machine

to reboot. The buffer size for reads and writes seemed to be

critical for performance, and the lack of a true reaJ-time fa-

cility for scheduling on the current SunOS (4. 1.2) made per-

formance at busy times less than perfect. The filtering and

culling of packets not containing voice data was important

to the overall performance of the network. The Ethernet in

the section of the lab in which students were testing their

audio projects went down several times during the course of

the project.

We also encountered some problems when using the LWP

library. Non-blocking 1/0 didn’t seem to work with the

lightweight processes unless the SIGPOLL was enabled for the

audio device. Hence in Figure 1 we had to do an ioctl with

the I.SETSIG argument. We also could not get the LWP li-

brary to work with our TLI version of UICI. We view these

as short term problems since there will be kernel support

for threads and lightweight processes in the next version of

SunOS [2, 4].

In addition, a good mechanism for allowing the receiver

to reject or accept calls should be incorporated in order to

remove the audio nuisance factor since the person sitting at

the workstation may not be a class member. Other enhance-

ments include a busy signal when a client calls a server which

is busy, or a call waiting mechanism which allows the server

to switch calls. The UICI routines used the TCP protocol.

We found that the sockets needed to be created with the

TCPIODELAY option or acknowledgments would be delayed

causing speech to be discontinuous [3]. This detail can be

hidden within UICI but is interesting from a network point

of view.

Overall the Ethercom seems to be an effective project

for introducing many important operating systems concepts

wit bout demanding an excessive programming effort. The

students who were working on the audio project seemed to

enjoy it. The project int reduces concepts in communication,

synchronization, signal handling and scheduling. It is sat-

isfying because of the immediate feedback provided by the

audio, and the simplicity of the 1/0.

All of the programs and a makefile for compilation are

available by anonymous ftp from ringer. cs. utsa. eduin the

directory /pub/sigcse92.

Acknowledgments:
We would like to thank the following students for their work

on Ethercom: L. Bishop, G. Butchee, R. Castaneda, S.

Dykes, E. Grossenbacher, K. He, S. Kulkarni, C. Michaels,

V. RandsJ, A. Shah and H. Yang. This work was supported

by the National Science Foundation ILI Program, Grant

USE-0950407.

References

[1]

[2]

[3]

[4]

[5]

[6]

R. Govindan and D. P. Anderson, “Scheduling and IPC
Mechanisms for Continuous Media,” Proc 13th ACM
Symposium on Operating Systems Principles, (1991)

pp. 68-80.

S. Khanna, M. Sebree, J. Zolnowsky, “Realtime
Scheduling in SunOS 5.o,” SunSoft Incorporated,
preprint, 1992.

S. Leffler, M. McKusick, M. Karels, and J. Quarter-
man, The Design and Implementation of .4..3BSD Unix
Operating System, Addison Wesley, 1989.

“SunOS 5.o Multithread Architecture,” Sun Microsys-
tems White Paper (1991).

W. R. Stevens, Unix Network Programming, Prentice
Hall, 199o.

D. B. Terry and D. C. Swinehart, “Managing Stored
Voice in the Etherphone System,” ACM Transactions
on Computer Systems Q (1988) pp. 3–27.

222

